Skip to main content

Increasing Robustness for Machine Learning Services in Challenging Environments: Limited Resources and No Label Feedback

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 294))

Included in the following conference series:

  • 1336 Accesses

Abstract

The importance of deployed machine learning solutions has increased significantly in the past years due to the availability of data sources, computing capabilities and convenient tooling. However, technical challenges such as limited resources and computing power arise in many applications. We consider a scenario where a machine learning model is deployed in an environment where all computations need to be performed on a local computing unit. Furthermore, after deployment, the model does not receive any ground truth labels as feedback. We develop a two-step prediction method which combines an outlier detection with a robust machine learning model. This approach is evaluated based on a data set from a large German OEM. We can show that the prediction performance is increased significantly with our approach while fulfilling the restrictions in terms of memory and computational power. This way, we contribute to the practical applicability of machine learning models for real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, P.S., Clark, K.B.: Behind the learning curve: a sketch of the learning process. Manage. Sci. 37(3), 267–281 (1991)

    Article  Google Scholar 

  2. Aggarwal, C.C.: Data Mining. The Textbook. Springer (2015). https://doi.org/10.1007/978-3-319-14142-8

  3. Alsheikh, M.A., Lin, S., Niyato, D., Tan, H.P.: Machine learning in wireless sensor networks: algorithms, strategies, and applications. IEEE Commun. Surv. Tutorials 16, 1996–2018 (2014)

    Article  Google Scholar 

  4. An, X., Zhou, X., Lü, X., Lin, F., Yang, L.: Sample selected extreme learning machine based intrusion detection in fog computing and MEC. Wireless Commun. Mob. Comput. 2018 (2018)

    Google Scholar 

  5. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: Bravo, J., Hervas, R., Rodriguez, M. (eds.)International Workshop on Ambient Assisted Living, pp. 216–223. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35395-6_30

  6. Anguita, D., Ghio, A., Pischiutta, S., Ridella, S.: A hardware-friendly support vector machine for embedded automotive applications. In: International Joint Conference on Neural Networks (IJCNN), pp. 1360–1364 (2007)

    Google Scholar 

  7. Armstrong, J.S., Collopy, F.: Error measures for generalizing about forecasting methods: empirical comparisons. Int. J. Forecasting 8(1), 69–80 (1992)

    Article  Google Scholar 

  8. Baier, L., Hofmann, M., Kühl, N., Mohr, M., Satzger, G.: Handling concept drifts in regression problems–the error intersection approach. In: International Conference on Wirtschaftsinformatik (2020)

    Google Scholar 

  9. Baier, L., Kühl, N., Satzger, G.: How to cope with change?-preserving validity of predictive services over time. In: Proceedings of the 52nd Hawaii International Conference on System Sciences (2019)

    Google Scholar 

  10. Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley, New York (1994)

    MATH  Google Scholar 

  11. Bergstra, J., Yoshua, B.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Cavalcante, R.C., Minku, L.L., Oliveira, A.L.: FEDD: feature extraction for explicit concept drift detection in time series. In: International Joint Conference on Neural Networks (IJCNN), pp. 740–747 (2016)

    Google Scholar 

  13. Chandola, V., Banerjee, A., Kumar, V.: Outlier detection: a survey. ACM Comput. Surv. 14, 15 (2007)

    Google Scholar 

  14. Chen, H., Chiang, R., Storey, V.: Business intelligence and analytics: from big data to big impact. MIS Q. 36(4), 1165–1188 (2012)

    Article  Google Scholar 

  15. Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., Bontempi, G.: Credit card fraud detection: a realistic modeling and a novel learning strategy. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3784–3797 (2017)

    Google Scholar 

  16. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The Mahalanobis distance. Chemometr. Intell. Lab. Syst. 40, 1–18 (2000)

    Article  Google Scholar 

  17. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. 46(4), 1–37 (2014)

    Article  Google Scholar 

  18. Golub, G.H., Heath, M., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)

    Article  MathSciNet  Google Scholar 

  19. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited numerical precision. In: International Conference on Machine Learning, pp. 1737–1746 (2015)

    Google Scholar 

  20. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22, 85–126 (2004)

    Article  Google Scholar 

  21. Fei, H., Hao, Q.: Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning. CRC Press, Boca Raton (2012)

    Google Scholar 

  22. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349(6245), 255–260 (2015)

    Article  MathSciNet  Google Scholar 

  23. Kadlec, P., Gabrys, B.: Local learning-based adaptive soft sensor for catalyst activation prediction. AIChE J. 57(5), 1288–1301 (2011)

    Article  Google Scholar 

  24. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  Google Scholar 

  25. Malikopoulos, A.A., Papalambros, P.Y., Assanis, D.N.: A learning algorithm for optimal internal combustion engine calibration in real time. In: ASME International Design Engineering Technical Conferences, pp. 91–100. American Society of Mechanical Engineers (2007)

    Google Scholar 

  26. Oneto, L., Ghio, A., Ridella, S., Anguita, D.: Learning resource-aware classifiers for mobile devices: from regularization to energy efficiency. Neurocomputing 169, 225–235 (2015)

    Article  Google Scholar 

  27. Orair, G.H., Teixeira, C.H., Meira Jr., W., Wang, Y., Parthasarathy, S.: Distance-based outlier detection: consolidation and renewed bearing. In: Proceedings of the VLDB Endowment, vol. 3, pp. 1469–1480. VLDB Endowment (2010)

    Google Scholar 

  28. Pedregosa, F., Varoquaux, G., Gramfort, A.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Raykar, V.C., et al.: Supervised learning from multiple experts: whom to trust when everyone lies a bit. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 889–896 (2009)

    Google Scholar 

  30. Schüritz, R., Satzger., G.: Patterns of data-infused business model innovation. In: Proceedings of IEEE 18th Conference on Business Informatics (CBI), vol. 1, pp. 133–142. IEEE (2016)

    Google Scholar 

  31. Tsymbal, A.: The problem of concept drift: definitions and related work. Computer Science Department, Trinity College Dublin, 106(2) (2004)

    Google Scholar 

  32. Vong, C.-M., Wong, P.-K., Li, Y.-P.: Prediction of automotive engine power and torque using least squares support vector machines and Bayesian inference. Eng. Appl. Artif. Intell. 19(3), 277–287 (2006)

    Article  Google Scholar 

  33. Wang, S., et al.: When edge meets learning: adaptive control for resource-constrained distributed machine learning. In: IEEE Conference on Computer Communications, pp. 63–71 (2018)

    Google Scholar 

  34. Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23(1), 69–101 (1996)

    Google Scholar 

  35. Xie, Y., Kistner, A., Bleile, T.: Optimal automated calibration of model-based ECU-functions in air system of diesel engines. Technical report, SAE Technical Paper (2018)

    Google Scholar 

  36. Yu, H.-F., Jain, P., Kar, P., Dhillon, I.: Large-scale multi-label learning with missing labels. In: International Conference on Machine Learning, pp. 593–601 (2014)

    Google Scholar 

  37. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J. Internet Serv. Appl. 1, 7–18 (2010)

    Google Scholar 

  38. Zhou, Z.-H.: Machine learning challenges and impact: an interview with Thomas Dietterich. Nat. Sci. Rev. 5(1), 54–58 (2017)

    Article  Google Scholar 

  39. Zimek, A., Schubert, E., Kriegel, H.-P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min. ASA Data Sci. J. 5(5), 363–387 (2012)

    Article  MathSciNet  Google Scholar 

  40. Žliobaitė, I.: Learning under concept drift: an overview. arXiv preprint arXiv:1010.4784 (2010)

  41. Žliobaite, I., Pechenizkiy, M., Gama, J.: An overview of concept drift applications. Big Data Analysis: New Algorithms for a New Society, pp. 91–114 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Baier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baier, L., Kühl, N., Schmitt, J. (2022). Increasing Robustness for Machine Learning Services in Challenging Environments: Limited Resources and No Label Feedback. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 294. Springer, Cham. https://doi.org/10.1007/978-3-030-82193-7_57

Download citation

Publish with us

Policies and ethics