Skip to main content

Wind Speed Time Series Prediction with Deep Learning and Data Augmentation

  • Conference paper
  • First Online:
Intelligent Systems and Applications (IntelliSys 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 294))

Included in the following conference series:

Abstract

This paper presents a hybrid model based on recurrent neural networks known as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) for the prediction of daily wind speed time series in the Moquegua region of Peru. The proposal model called GRU LSTM GRU LSTM + DA consists of an architecture of 4 hybrid sequential layers and works on a normalization scale of −1, +1 instead of the traditional 0, +1 scale, it also uses data augmentation (DA) to improve the process training and prediction results of the model. The results of the proposal are compared with 4 benchmark models (GRU GRU GRU GRU, LSTM LSTM LSTM LSTM, GRU LSTM and GRU LSTM GRU LSTM), showing that the proposal in terms of RMSE, RRMSE and MAPE by far exceeds the benchmark models. In the same way, the results achieved in terms of RMSE are compared with the results of related work, showing the superiority of the proposal model in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://power.larc.nasa.gov/data-access-viewer/.

References

  1. McMichael, A.J., Lindgren, E.: Climate change: present and future risks to health, and necessary responses. J. Intern. Med. 270(5), 401–413 (2011)

    Article  Google Scholar 

  2. Flores, A., Tito, H., Centty, D.: Comparison of hybrid recurrent neural networks for univariate time series forecasting. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) Intelligent Systems and Applications. IntelliSys 2020. Advances in Intelligent Systems and Computing, vol. 1250, pp. 375–387.Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55180-3_28

  3. Yeomans, J., Thwaites, S., Robertson, W.S.P., Booth, D., Ng, B., Thewlis, D.: Simulating time-series data for improved deep neural network performance. IEEE Access. 7, 131248–131255 (2019)

    Article  Google Scholar 

  4. Rashid, K.M., Louis, J.: Times-series data augmentation and deep learning for construction equipment activity recognition. Adv. Eng. Inform. 42, 1–12 (2019)

    Article  Google Scholar 

  5. Iwana, B.K., Uchida, S.: Time series data augmentation for neural networks by time warping with a discriminative teacher. arxiv.org (2020)

    Google Scholar 

  6. Rashid, K.M., Louis, J.: Window-warping: a time series data augmentation of IMU data for construction equipment activity identification. In: de 36 International Sympoium on Automation and Robotics in Construction (ISARC 2019), Banff, Canada (2019)

    Google Scholar 

  7. Flores, A., Tito, H., Apaza-Alanoca, H.: Data augmentation for short-term time series prediction with deep learning. In: de Computing Conference, London, United Kingdom (2021, in press)

    Google Scholar 

  8. Flores, A., Tito, H., Centty, D.: Recurrent neural networks for meteorological time series imputation. Int. J. Adv. Comput. Sci. Appl. 11(3), 482–487 (2020)

    Google Scholar 

  9. Flores, A., Tito, H., Centty, D.: Improving gated recurrent unit predictions with univariate time series imputation techniques. Int. J. Adv. Comput. Sci. Appl. 10(12), 710–714 (2019)

    Google Scholar 

  10. Huynh, A.N-L., Deo, R.C., An-Vo, D-A., Ali, M., Raj, N., Abdulla, S.: Near real-time global solar radiation forecasting at multiple time-step horizons using the Long Short-Term Memory network. Energies 13(3517), 11–30 (2020)

    Google Scholar 

  11. Gürel, A.E., Ağbulut, Ü., Biçen, Y.: Assessment of machine learning, time series, response surface methdology and empirical models in prediction of global solar radiation. J. Clean. Prod. 277, 122353 (2020)

    Article  Google Scholar 

  12. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8(6085), 1–12 (2018)

    Google Scholar 

  13. Zhang, W., Wang, J., Wang, J., Zhao, Z., Tian, M.: Short-term wind speed forecasting based on a hybrid model. J. Appl. Soft Comput. 92(106294), 1–20 (2013)

    Google Scholar 

  14. Qureshi, A.S., Khan, A., Zameer, A., Usman, A.: Wind power prediction using deep neural network based meta regression and transfer learning. Appl. Soft Comput. 58, 742–755 (2017)

    Article  Google Scholar 

  15. Bokde, N., Feijoo, A., Kulat, K.: Analysis of differencing and decomposition preprocessing methods for wind speed prediction. Appl. Soft Comput. 71, 926–938 (2018)

    Article  Google Scholar 

  16. Mezaache, H,, Bouzgoud, H.: Auto-encoder with neural networks for wind speed forecasting. In: de IEEE International Conference on Communications and Electrical Engineering, El Oued, Algeria (2018)

    Google Scholar 

  17. Khodayar, M.I., Wang, J., Manthouri, M.: Interval deep generative neural network for wind speed forecasting. IEEE Trans. Smart Grid 10(4), 3974–3989 (2019)

    Google Scholar 

  18. Li, G., Wang, T.F., Hu, F.X., Liu, T.C.: Algorithm considering multi-dimensional meteorological feature extraction in short-term wind speed prediction. In: de IEEE Information Technology, Networking, Electronic and Automation Control Conference, Chengdu, China (2019)

    Google Scholar 

  19. Liu, M., Qiu, P., Wei, K.: Research on wind speed prediction of wind power system based on GRU deep learning. In: de IEEE Conference on Energy Internet and Energy System Integration, Changsha, China (2019)

    Google Scholar 

  20. Deng, Y., Jia, H., Li, P., Tong, X., Qiu, X., Li, F.: A deep learning methodology based on bidirectional gated recurrent unit for window power prediction. In: de IEEE, Xi'an, China (2019)

    Google Scholar 

  21. Wang, J., Li, Y.: An innovative hybrid approach for multi-step ahead wind speed prediction. Appl. Soft Comput. J. 78, 296–309 (2019)

    Article  Google Scholar 

  22. Jiang, P., Liu, Z.: Variable weights combined model based on multi-objective optimization for short-term wind speed forecasting. Appl. Soft Comput. J. 82(105587), 1–19 (2019)

    Google Scholar 

  23. Cheng, Z., Wang, J.: A new combined model based on multi-objective slap swarm optimization for wind speed forecasting. Appl. Soft Comput. J. 92(106294), 1–20 (2020)

    Google Scholar 

  24. Altan, A., Karasu, S., Zio, E.: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Appl. Soft Comput. 100, 106996 (2020)

    Article  Google Scholar 

  25. Yan, X., Liu, Y., Xu, Y., Jia, M.: Multistep forecasting for diurnal wind speed based on hybrid deep learning model with improved singular spectrum decomposition. Energy Convers. Manage. 225(113456), 1–22 (2020)

    Google Scholar 

  26. Noman, F., et al.: Multistep short-term wind speed prediction using nonlinear auto-regressive neural network with exogenous variable selection. Alexand. Eng. J. 60(1), 1221–1229 (2020)

    Article  Google Scholar 

  27. Luo, L., Li, H., Wang, J., Hu, J.: Design of a combined wind speed forecasting system based on decomposition-ensemble and multi-objective optimization approach. Appl. Math. Model. 89, 49–72 (2021)

    Article  MathSciNet  Google Scholar 

  28. Xiangang, L., Xihong, W.: Constructing long short-term memory based deep recurrent neural networks for large vocabulary speech recognition. arxiv.org (2014)

    Google Scholar 

  29. Kyunghyun, C., et al.: Learning phrase representations using RNN enconder-decoder for statistical machine traslation. 1–15 (2014). arxiv.org

    Google Scholar 

  30. Gail, W., Yoav, G., Eran, Y.: On the practical computational power of finite precision RNNs for language recognition. 1–9 (2018), arxiv.org

    Google Scholar 

  31. Huynh, A.N.-L., Deo, R.C., An-Vo, D.-A-, Ali, M., Raj, N., Abdulla, S.: Near real-time global solar radiation forecasting at multiple time-step horizons using the long short-term memory network. Energies 13(14), 3517 (2020)

    Google Scholar 

  32. Liu, M., Qiu, P., Wei, K.: Research on wind speed prediction of wind power system based on GRU deep learning. In: de IEEE Conference on Energy Internet and Energy System Integration, Changsha, China (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Flores, A., Tito-Chura, H., Yana-Mamani, V. (2022). Wind Speed Time Series Prediction with Deep Learning and Data Augmentation. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in Networks and Systems, vol 294. Springer, Cham. https://doi.org/10.1007/978-3-030-82193-7_22

Download citation

Publish with us

Policies and ethics