Skip to main content

An Introduction to Ecoacoustics

  • Chapter
  • First Online:
Methods in Ecoacoustics

Abstract

Ecoacoustics is a new discipline that aims to investigate the ecological role of sounds of geological, biophonic, and anthropogenic origin. Its development has been favored by new robust theoretical principles associated to efficient metrics for data processing and by the availability of autonomous acoustic recorders to collect a great number of acoustic files at different temporal and geographical scale.

The double role of sound as a semiotic tool to communicate and as ecological proxy of environmental conditions to select habitats and to navigate represents the ideal condition for a rapid development of this discipline. The transformation of latent vibrations as generators of any typology of sound, a clear semiosis that recognizes a sonoscape as the component of the original vibroscape sensed by organisms, and a soundscape as the portion of sonoscape interpreted by individual species are three components of the sonic domain. Sonotope and soundtope, respectively, are sensed and interpreted patches with which soniferous species and acoustic communities interact in a spatial sonic mosaic.

The Morphological Adaptation Hypothesis, the Acoustic Adaptation Hypothesis, the Acoustic Niche Hypothesis, the Acoustic Community Hypothesis, and the Acoustic Habitat Hypothesis represent the theoretical fundaments of ecoacoustics.

An acoustic community is defined as the collection of soniferous species acoustically active in space and time. Such aggregation of soniferous species determines a sonic environment variable in space and time and represented by sonic matrices (on which to apply ecoacoustics metrics) after a process of migration from a temporal domain to a frequential domain via a Fourier Transform. A large portion of ecoacoustic investigations focuses on the role of noise (especially of anthropogenic origin) on behavioral and ecological processes in terrestrial and in aquatic ecosystems.

To describe the complex sonic domain where an originator vibroscape evolves into several distinct objects obtained after a latent, sensed, and interpreted semiosis requires the development of a dedicated narrative. Sonoscape is the result of a sensed vibroscape, and a soundscape is obtained from an interpreted sonoscape. Sonotopes represent the “geographical” elements composing a sonoscape, and their detection is obtained by the deployment of sound recorders according to a configuration that enhances the spatial heterogeneity. Sonotopes are the spatial unit of a sonic information system and represent the link with the geographical character of a landscape. Every sonotope is characterized by species-specific sonic and acoustic signatures. The former (species-specific sonic signature) is the result of a sensed vibroscape and the latter (species-specific acoustic signature) of the interpretation of sonic signals.

Ecoacoustic events obtained by coding three metrics (ACIft, ACIft evenness, and ACItf evenness) are an attempt to discretize acoustic signals into functional or statistical distinct units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agranat, I. (2007). Automatic detection of caeruleus warbler using autonomous recording units and song scope bioacoustic software. Wildlife Acoustics.

    Google Scholar 

  • Agranat, I. (2009). Automatically identifying animal species from their vocalizations. Wildlife Acoustic.

    Google Scholar 

  • Andreasen, M. M., Howard, T. J., & Bruun, H. P. L. (2014). Domain theory, its models and concepts. In An anthology of theories and models of design (pp. 173–195). Springer.

    Google Scholar 

  • Babisch, W., Beule, B., Schust, M., Kersten, N., & Ising, H. (2005). Traffic noise and risk of myocardial infarction. Epidemiology, 16, 33–40.

    PubMed  Google Scholar 

  • Barber, J. R., Crooks, K. R., & Fristrup, K. M. (2009). The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology and Evolution, 25(3), 180–189.

    PubMed  Google Scholar 

  • Bateson, G. (1970). Form, substance, and difference. General Semantic Bulletin, 37, 5–13.

    Google Scholar 

  • Birch, C. P., Oom, S. P., & Beecham, J. A. (2007). Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecological Modelling, 206(3–4), 347–359.

    Google Scholar 

  • Boeckle, M., Preninger, D., & Hödl, W. (2009). Communication in noisy environments. I: Acoustic signals of Staurois latopalmatus Boulenger 1887. Herpetologica, 65(2), 154–165.

    Google Scholar 

  • Brumm, H., & Slabbekoorn, H. (2005). Acoustic communication in noise. In P. J. B. Slater, C. T. Snowdon, T. J. Roper, H. J. Brockmann, & M. Naguib (Eds.), Advances in the study of behavior (Vol. 35, pp. 151–209). Academic Press.

    Google Scholar 

  • Brumm, H., & Slater, P. J. (2006). Ambient noise, motor fatigue, and serial redundancy in chaffinch song. Behavioral Ecology and Sociobiology, 60(4), 475–481.

    Google Scholar 

  • Chan, A. A. Y. H., Giraldo-Perez, P., Smith, S., & Blumstein, D. T. (2010). Anthropogenic noise affects risk assessment and attention: The distracted prey hypothesis. Biology Letters, 6(4), 458–461.

    PubMed  PubMed Central  Google Scholar 

  • Chestnut, H. (1967). Systems engineering methods. Wiley.

    Google Scholar 

  • Chitra, B., Jain, M., & Chundelli, F. A. (2020). Understanding the soundscape environment of an urban park through landscape elements. Environmental Technology & Innovation, 19, 100998.

    Google Scholar 

  • Davies, W. J., Adams, M. D., Bruce, N. S., Cain, R., Carlyle, A., Cusack, P., Hall, D. A., Hume, K. I., Irwin, A., Jennings, P., Marselle, M., Plack, C. J., & Poxon, J. (2013). Perception of soundscapes: An interdisciplinary approach. Applied Acoustics, 74(2), 224–231.

    Google Scholar 

  • De Coensel, B., & Botteldooren, D. (2006). The quiet rural soundscape and how to characterize it. Acta Acustica United with Acustica, 92(6), 887–897.

    Google Scholar 

  • Depraetere, M., Pavoine, S., Jiguet, F., Gasc, A., Duvail, S., & Sueur, J. (2012). Monitoring animal diversity using acoustic indices: Implementation in a temperate woodland. Ecological Indicators, 13(1), 46–54.

    Google Scholar 

  • Díaz, M., Parra, A., & Gallardo, C. (2011). Serins respond to anthropogenic noise by increasing vocal activity. Behavioral Ecology, 22(2), 332–336.

    Google Scholar 

  • Duellman, W. E., & Pyles, R. A. (1983). Acoustic resource partitioning in anuran communities. Copeia, 1983, 639–649.

    Google Scholar 

  • Elbing, B. R., Petrin, C., & Van Den Broeke, M. S. (2018). Monitoring infrasound from a tornado in Oklahoma. The Journal of the Acoustical Society of America, 143(3), 1808–1808.

    Google Scholar 

  • Fan, Q. D., He, Y. J., & Hu, L. (2021). Soundscape evaluation and construction strategy of park road. Applied Acoustics, 174, 107685.

    Google Scholar 

  • Farina, A. (2014). Soundscape ecology: Principles, patterns, methods and applications. Springer.

    Google Scholar 

  • Farina, A. (2018). Perspectives in ecoacoustics: A contribution to defining a discipline. Journal of Ecoacoustics, 2, TRZD5I.

    Google Scholar 

  • Farina, A., & Belgrano, A. (2006). The eco-field hypothesis: Toward a cognitive landscape. Landscape Ecology, 21(1), 5–17.

    Google Scholar 

  • Farina, A., & Gage, S. H. (2017). Ecoacoustics: A new science. In A. Farina & S. H. Gage (Eds.), Ecoacoustics: The ecological role of sounds (pp. 1–9). Wiley.

    Google Scholar 

  • Farina, A., & James, P. (2016). The acoustic communities: Definition, description and ecological role. Biosystems. https://doi.org/10.1016/j.biosystems.2016.05.011

  • Farina, A., & James, P. (2021). Vivoscapes: An ecosemiotic contribution to the ecological theory. Biosemiotics, 1–13. https://doi.org/10.1007/s12304-021-09406-2

  • Farina, A., & Pieretti, N. (2014). Sonic environment and vegetation structure: A methodological approach for a soundscape analysis of a Mediterranean maqui. Ecological Informatics, 21, 120–132.

    Google Scholar 

  • Farina, A., Gage, S. H., & Salutari, P. (2018). Testing the ecoacoustics event detection and identification (EEDI) approach on Mediterranean soundscapes. Ecological Indicators, 85, 698–715.

    Google Scholar 

  • Farina, A., Eldridge, A., & Li, P. (2021a). Ecoacoustics and multispecies semiosis: Naming, semantics, semiotic characteristics, and competencies. Biosemiotics. https://doi.org/10.1007/s12304-021-09402-6

  • Farina, A., Righini, R., Fuller, S., Li, P., & Pavan, G. (2021b). Acoustic complexity indices reveal the acoustic communities of the old-growth Mediterranean forest of Sasso Fratino integral natural reserve (Central Italy). Ecological Indicators, 120, 106927.

    Google Scholar 

  • Fletcher, N. H. (2007). Animal bioacoustics. In T. D. Rossing (Ed.), Springer handbook of acoustics (pp. 785–802). Springer.

    Google Scholar 

  • Francis, C. D., Ortega, C. P., & Cruz, A. (2009). Noise pollution changes avian communities and species interactions. Current Biology, 19(16), 1415–1419.

    CAS  PubMed  Google Scholar 

  • Fuller, S., Axel, A. C., Tucker, D., & Gage, S. H. (2015). Connecting soundscape to landscape: Which acoustic index best describes landscape configuration? Ecological Indicators, 58, 207–215.

    Google Scholar 

  • Habib, L., Bayne, E. M., & Boutin, S. (2007). Chronic industrial noise affects pairing success and age structure of ovenbirds Seiurus aurocapilla. Journal of Applied Ecology, 44(1), 176–184.

    Google Scholar 

  • Hahn, B. A., & Silverman, E. D. (2007). Managing breeding forest songbirds with conspecific song playbacks. Animal Conservation, 10(4), 436–441.

    Google Scholar 

  • Hall, A. D. (1962). A methodology for systems engineering. Van Nostrand.

    Google Scholar 

  • Hill, A. P., Prince, P., Snaddon, J. L., Doncaster, C. P., & Rogers, A. (2019). AudioMoth: A low-cost acoustic device for monitoring biodiversity and the environment. HardwareX, 6, e00073.

    Google Scholar 

  • Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22, 415–427. GS SEARCH.

    Google Scholar 

  • Ideker, T., Dutkowski, J., & Hood, L. (2011). Boosting signal-to-noise in complex biology: Prior knowledge is power. Cell, 144(6), 860–863.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krause, B. (1993). The niche hypothesis, a hidden symphony of animal sounds, the origins of musical expression and the health of habitats (pp. 156–160). The Explorers journal.

    Google Scholar 

  • Krause, B. (2012). The great animal orchestra. Little, Brown.

    Google Scholar 

  • Krause, B., & Farina, A. (2016). Using ecoacoustic methods to survey the impacts of climate change on biodiversity. Biological Conservation, 195, 245–254.

    Google Scholar 

  • Lemon, R. E., Struger, J., Lechowicz, M. J., & Norman, R. F. (1981). Song features and singing heights of American warblers. Maximization or optimization of distance? The Journal of the Acoustical Society of America, 69(4), 1169–1176.

    Google Scholar 

  • Lombard, E. (1911). Le signe de l’elevation de la voix. Annales des Maladies de L’Oreille et du Larynx, 37, 101–199.

    Google Scholar 

  • Lupo, C., Lodi, L., Paluffi, G., & Viti, A. (1991). Central and peripheral endocrine correlates of the immobility reaction in the toad Bufo bufo. Behavioural Processes, 24(1), 1–7.

    CAS  PubMed  Google Scholar 

  • Luther, D., & Gentry, K. (2013). Sources of background noise and their influence on vertebrate acoustic communication. Behaviour, 150, 1045–1068.

    Google Scholar 

  • Malavasi, R., & Farina, A. (2013). Neighbours’ talk: Interspecific choruses among songbirds. Bioacoustics, 22(1), 33–48.

    Google Scholar 

  • Marten, K., & Marler, P. (1977). Sound transmission and its significance for animal vocalization. Behavioral Ecology and Sociobiology, 2, 271–290.

    Google Scholar 

  • Morton, E. (1975). Ecological sources of selection on avian sounds. The American Naturalist, 109(965), 17–34.

    Google Scholar 

  • Mullet, T. C., Farina, A., & Gage, S. H. (2017). The acoustic habitat hypothesis: An ecoacoustics perspective on species habitat selection. Biosemiotics, 10(3), 319–336.

    Google Scholar 

  • Naguib, M. (2013). Living in a noisy world: Indirect effects of noise on animal communication. Behaviour, 150(9–10), 1069–1084.

    Google Scholar 

  • Narins, P. M., Feng, A. S., Lin, W., Schnitzler, H. U., Denzinger, A., Suthers, R. A., & Xu, C. (2004). Old World frog and bird vocalizations contain prominent ultrasonic harmonics. The Journal of the Acoustical Society of America, 115(2), 910–913.

    PubMed  Google Scholar 

  • Nowacek, D. P., Thorne, L. H., Johnston, D. W., & Tyack, P. L. (2007). Responses of cetaceans to anthropogenic noise. Mammal Review, 37, 81–115.

    Google Scholar 

  • Ortega, C. P. (2012). Chapter 2: Effects of noise pollution on birds: A brief review of our knowledge. Ornithological Monographs, 74(1), 6–22.

    Google Scholar 

  • Parisi, I., De Vincenzi, G., Torri, M., Papale, E., Mazzola, S., Bonanno, A., & Buscaino, G. (2017). Underwater vocal complexity of Arctic seal Erignathus barbatus in Kongsfjorden (Svalbard). The Journal of the Acoustical Society of America, 142(5), 3104–3115.

    PubMed  Google Scholar 

  • Pedroso, S. S., Barber, I., Svensson, O., Fonseca, P. J., & Amorim, M. C. P. (2013). Courtship sounds advertise species identity and male quality in sympatric Pomatoschistus spp. gobies. PLoS One, 8(6), e64620.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pieretti, N., Farina, A., & Morri, D. (2011). A new methodology to infer the singing activity of an avian community: The Acoustic Complexity Index (ACI). Ecological Indicators, 11(3), 868–873.

    Google Scholar 

  • Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B., Napoletano, B. M., Gage, S. H., & Pieretti, N. (2011a). Soundscape ecology: The science of sound in the landscape. Bioscience, 61(3), 203–216.

    Google Scholar 

  • Pijanowski, B. C., Farina, A., Dumyahn, S. L., Krause, B. L., & Gage, S. H. (2011b). What is soundscape ecology? Landscape Ecology, 26(9), 1213–1232.

    Google Scholar 

  • Pocock, D. (1989). Sound and the geographer. Geography, 74(3), 193–200.

    Google Scholar 

  • Potash, L. M. (1972). Noise-induced changes in calls of the Japanese quail. Psychonomic Science, 26(5), 252–254.

    Google Scholar 

  • Rabin, L. A., Coss, R. G., & Owings, D. H. (2006). The effects of wind turbines on antipredator behavior in California ground squirrels (Spermophilus beecheyi). Biological Conservation, 131(3), 410–420.

    Google Scholar 

  • Risser, P. G. (1995). The status of the science examining ecotones. Bioscience, 45(5), 318–325.

    Google Scholar 

  • Ross, S. R. J., Friedman, N. R., Yoshimura, M., Yoshida, T., Donohue, I., & Economo, E. P. (2021). Utility of acoustic indices for ecological monitoring in complex sonic environments. Ecological Indicators, 121, 107114.

    Google Scholar 

  • Scales, J. A., & Snieder, R. (1998). What is noise? Geophysics, 63(4), 1122–1124.

    Google Scholar 

  • Slabbekoorn, H., Bouton, N., van Opzeeland, I., et al. (2010). A noisy spring: The impact of globally rising underwater sound levels on fish. Trends in Ecology and Evolution, 25, 419–427.

    PubMed  Google Scholar 

  • Snell-Rood, E. C. (2012). The effect of climate on acoustic signals: Does atmospheric sound absorption matter for bird song and bat echolocation? The Journal of the Acoustical Society of America, 131(2), 1650–1658.

    PubMed  Google Scholar 

  • Spencer, K. A., Buchanan, K. L., Goldsmith, A. R., & Catchpole, C. K. (2003). Song as an honest signal of developmental stress in the zebra finch (Taeniopygia guttata). Hormones and Behavior, 44(2), 132–139.

    CAS  PubMed  Google Scholar 

  • Stowell, D., & Sueur, J. (2020). Ecoacoustics: Acoustic sensing for biodiversity monitoring at scale. Remote Sensing in Ecology and Conservation. https://doi.org/10.1002/rse2.174

  • Sueur, J. (2002). Cicada acoustic communication: Potential sound partitioning in a multispecies community from Mexico (Hemiptera: Cicadomorpha: Cicadidae). Biological Journal of the Linnean Society, 75, 379–394.

    Google Scholar 

  • Sueur, J. (2018). Sound analysis and synthesis with R. Springer.

    Google Scholar 

  • Sueur, J., & Farina, A. (2015). Ecoacoustics: The ecological investigation and interpretation of environmental sound. Biosemiotics, 8, 493–502. https://doi.org/10.1007/s12304-015-9248-x

    Article  Google Scholar 

  • Sueur, J., Aubin, T., & Simonis, C. (2008). Seewave: A free modular tool for sound analysis and synthesis. Bioacoustics, 18, 213–226.

    Google Scholar 

  • Sueur, J., Farina, A., Gasc, A., Pieretti, N., & Pavoine, S. (2014). Acoustic indices for biodiversity assessment and landscape investigation. Acta Acustica United with Acustica, 100(4), 772–781.

    Google Scholar 

  • Towsey, M., Wimmer, J., Williamson, I., & Roe, P. (2014a). The use of acoustic indices to determine avian species richness in audio-recordings of the environment. Ecological Informatics, 21, 110–119.

    Google Scholar 

  • Towsey, M., Zhang, L., Cottman-Fields, M., Wimmer, J., Zhang, J., & Roe, P. (2014b). Visualization of long-duration acoustic recordings of the environment. Procedia Computer Science, 29, 703–712.

    Google Scholar 

  • Truax, B. (Ed.). (1999). Handbook for acoustic ecology. Cambridge Street Publishing.

    Google Scholar 

  • Tucker, D., Gage, S. H., Williamson, I., & Fuller, S. (2014). Linking ecological condition and the soundscape in fragmented Australian forests. Landscape Ecology, 29(4), 745–758.

    Google Scholar 

  • Velásquez, N. A., Moreno-Gómez, F. N., Brunetti, E., & Penna, M. (2018). The acoustic adaptation hypothesis in a widely distributed South American frog: Southernmost signals propagate better. Scientific Reports, 8(1), 1–12.

    Google Scholar 

  • Wallschläger, D. (1980). Correlation of song frequency and body weight in passerine birds. Experientia, 36(4), 412–412.

    Google Scholar 

  • Ward, M. P., & Schlossberg, S. (2004). Conspecific attraction and the conversation of territorial songbirds. Conservation Biology, 18(2), 519–525.

    Google Scholar 

  • Wiley, R. H. (1994). Errors, exaggeration, and deception. In Behavioral mechanisms in evolutionary ecology (Vol. 157).

    Google Scholar 

  • Wyman, M. T., Mooring, M. S., Mccowan, B., Penedo, M. C. T., Reby, D., & Hart, L. A. (2012). Acoustic cues to size and quality in the vocalizations of male North American bison, Bison bison. Animal Behaviour, 84(6), 1381–1391.

    Google Scholar 

  • Zeyl, J. N., den Ouden, O., Köppl, C., Assink, J., Christensen-Dalsgaard, J., Patrick, S. C., & Clusella-Trullas, S. (2020). Infrasonic hearing in birds: A review of audiometry and hypothesized structure–function relationships. Biological Reviews, 95(4), 1036–1054.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farina, A., Li, P. (2021). An Introduction to Ecoacoustics. In: Methods in Ecoacoustics . Frontiers in Ecoacoustics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-82177-7_1

Download citation

Publish with us

Policies and ethics