Skip to main content

An IoT Ontology Class Recommendation Method Based on Knowledge Graph

  • Conference paper
  • First Online:
Knowledge Science, Engineering and Management (KSEM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12815))

  • 2452 Accesses

Abstract

Ontology is a formal representation of a domain using a set of concepts of the domain and how these concepts are related. Class is one of the components of an ontology for describing the concepts of the system. It is used to create, update, search or delete instances which are digital representations of physical things. With the development of the IoT (Internet of Things) technology, developers create and manage the corresponding IoT instances on IoT platform. With the user’s query of a few key words, how to find the ontology classes accurately is a hard problem. IoT Ontology classes recommender system can help developers find the ontology classes that they want to use efficiently. In a general recommender system, user’s historical usage records, background features and input keywords are used for making personalized recommendations. However, the newly established IoT platforms do not have a large number of user usage records to optimize recommendation results. And recommendation based on input words’ semantics lacks relevance between the IoT ontology classes. This paper proposed a method for recommendation of IoT ontology classes based on knowledge graph building and semantics to introduce more auxiliary information and relationships for the recommendation. And the result shows that our proposed recommendation method can recommend more related IoT ontology classes and have better performance in results’ accuracy.

National Key R&D Program of China (No. 2019YFB2102200), National Natural Science Foundation of China (No. 61977003) and Orange R&D Beijing Company Limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guarino, N., Carrara, M., Giaretta, P.: An ontology of meta-level categories. In: Principles of Knowledge Representation and Reasoning, pp. 270–280. Elsevier (1994)

    Google Scholar 

  2. Nambi, S.A.U., Sarkar, C., Prasad, R.V., Rahim, A.: A unified semantic knowledge base for iot. In: 2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 575–580. IEEE (2014)

    Google Scholar 

  3. Gai, K., Qiu, M., Zhao, H., Sun, X.: Resource management in sustainable cyber-physical systems using heterogeneous cloud computing. IEEE Trans. Sustainable Comput. 3(2), 60–72 (2017)

    Article  Google Scholar 

  4. Dai, W., Qiu, L., Wu, A., Qiu, M.: Cloud infrastructure resource allocation for big data applications. IEEE Trans. Big Data 4(3), 313–324 (2016)

    Article  Google Scholar 

  5. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work, pp. 175–186 (1994)

    Google Scholar 

  6. Wartena, C., Slakhorst, W., Wibbels, M.: Selecting keywords for content based recommendation. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1533–1536 (2010)

    Google Scholar 

  7. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space, arXiv preprint arXiv:1301.3781 (2013)

  8. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  9. Khattar, D., Kumar, V., Varma, V., Gupta, M.: Weave&rec: a word embedding based 3-d convolutional network for news recommendation. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1855–1858 (2018)

    Google Scholar 

  10. Naumov, M., et al.: Deep learning recommendation model for personalization and recommendation systems, arXiv preprint arXiv:1906.00091 (2019)

  11. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  12. Cao, Y., Wang, X., He, X., Hu, Z., Chua, T.-S.: Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences. In: The World Wide Web Conference, pp. 151–161 (2019)

    Google Scholar 

  13. V. W. Anelli, T. Di Noia, E. Di Sciascio, A. Ragone, and J. Trotta, "How to make latent factors interpretable by feeding factorization machines with knowledge graphs. In: International Semantic Web Conference, pp. 38–56. Springer (2019). doi: 10.1007/978-3-030-30793-6\_3

    Google Scholar 

  14. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: Autorec: autoencoders meet collaborative filtering. In: Proceedings of the 24th International Conference on World Wide Web, pp. 111–112 (2015)

    Google Scholar 

  15. Jenatton, R., Le Roux, N., Bordes, A., Obozinski, G.: A latent factor model for highly multi-relational data. In: Advances in Neural Information Processing Systems 25 (NIPS 2012), pp. 3176–3184 (2012)

    Google Scholar 

  16. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182 (2017)

    Google Scholar 

  17. Okura, S., Tagami, Y., Ono, S., Tajima, A.: Embedding-based news recommendation for millions of users. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1933–1942 (2017)

    Google Scholar 

  18. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: meta path-based top-k similarity search in heterogeneous information networks. Proc. VLDB Endowment 4(11), 992–1003 (2011)

    Article  Google Scholar 

  19. Sha, X., Sun, Z., Zhang, J.: Attentive knowledge graph embedding for personalized recommendation, arXiv preprint arXiv:1910.08288 (2019)

  20. Ma, W., et al.: Jointly learning explainable rules for recommendation with knowledge graph. In: The World Wide Web Conference, pp. 1210–1221 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuantao Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Yin, C., Fan, X., Wu, S., Wang, L. (2021). An IoT Ontology Class Recommendation Method Based on Knowledge Graph. In: Qiu, H., Zhang, C., Fei, Z., Qiu, M., Kung, SY. (eds) Knowledge Science, Engineering and Management. KSEM 2021. Lecture Notes in Computer Science(), vol 12815. Springer, Cham. https://doi.org/10.1007/978-3-030-82136-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82136-4_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82135-7

  • Online ISBN: 978-3-030-82136-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics