Skip to main content

An Ontology for System Reconfiguration: Integrated Modular Avionics IMA Case Study

  • Conference paper
  • First Online:
Recent Trends and Advances in Model Based Systems Engineering

Abstract

System reconfiguration (SR) is essential in system management, as it is an enabler for system flexibility and adaptability, attendant ilities being reliability, availability, maintainability, testability, safety, and reuse of system entities and technologies. Within current industrial practice, the development of reconfiguration tools is a real challenge. The development of these tools demand clear identification of reconfiguration data. In this paper, key concepts of the reconfiguration process, and relations among them, are represented in the form of the OSysRec ontology. These concepts are applied to the integrated modular avionics case study to test the proposed ontology within the aerospace domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali, A.B.H., et al. 2011. Safe Reconfigurations of Agents-Based Embedded Control Systems. In IECON Proceedings (Industrial Electronics Conference). IEEE, pp. 4344–4350. https://doi.org/10.1109/IECON.2011.6120023.

  • Alsafi, Y., and V. Vyatkin. 2010. Ontology-Based Reconfiguration Agent for Intelligent Mechatronic Systems in Flexible Manufacturing. Robotics and Computer-Integrated Manufacturing 26 (4): 381–391. https://doi.org/10.1016/j.rcim.2009.12.001.

    Article  Google Scholar 

  • ASAAC. 2004. ASAAC Final Draft of Proposed Guidelines for System Issues Document reference: ASAAC2-GUI-32450-001-CPG.

    Google Scholar 

  • Bermejo-alonso, J., et al. 2011. Engineering An Ontology for Autonomous Systems – The OASys Ontology, pp. 47–58. https://doi.org/10.5220/0003634600470058.

  • Bermejo-Alonso, J., C. Hernandez, and R. Sanz. 2016. Model-Based Engineering of Autonomous Systems Using Ontologies and Metamodels. In ISSE 2016 – 2016 International Symposium on Systems Engineering – Proceedings Papers. https://doi.org/10.1109/SysEng.2016.7753185.

  • Gogniat, G., et al. 2013. Dynamic Applications on Reconfigurable Systems: From UML Model Design to FPGAs Implementation. In 2011 Design, Automation & Test in Europe. IEEE, pp. 1–4. https://doi.org/10.1109/date.2011.5763315.

  • Gruber, T., and M. Özsu. 2009. Encyclopedia of Database Systems. Ontology.

    Google Scholar 

  • Hernández, C., et al. 2015. Model-Based Metacontrol for Self-adaptation. In International Conference on Intelligent Robotics and Applications. Springer, pp. 643–654. 10.1007/978-3-319-22879-2_58.

    Google Scholar 

  • ISO/IEC:15288. 2015. ISO/IEC/IEEE/15288: Systems and Software Engineering – System Life Cycle Processes.

    Google Scholar 

  • Krichen, F., and B. Zalila. 2011. Towards a Model-Based Approach for Reconfigurable DRE Systems Towards a Model-Based Approach for Reconfigurable DRE Systems. In European Conference on Software Architecture. Springer, pp. 295–302. https://doi.org/10.1007/978-3-642-23798-0.

  • Liang, Q., et al. 2011. Ontology-Based Business Process Customization for Composite Web Services. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans 41 (4): 717–729. https://doi.org/10.1109/TSMCA.2011.2132710. IEEE.

    Article  Google Scholar 

  • Madni, A.M., and M. Sievers. 2017. Model-Based Systems Engineering: Motivation, Current Status, and Needed Advances. In Disciplinary Convergence in Systems Engineering Research, pp. 311–325. https://doi.org/10.1007/978-3-319-62217-0_22.

  • Medina-Oliva, G., et al. 2014. Predictive Diagnosis Based on a Fleet-Wide Ontology Approach. In Knowledge-Based Systems. Elsevier B.V., 68, pp. 40–57. https://doi.org/10.1016/j.knosys.2013.12.020.

  • Meyer, F., et al. 2013. An Approach for Knowledge-Based IT Management of Air Traffic Control Systems. In 2013 9th International Conference on Network and Service Management, CNSM 2013 and Its Three Collocated Workshops – ICQT 2013, SVM 2013 and SETM 2013, pp. 345–349. https://doi.org/10.1109/CNSM.2013.6727856.

  • Nadoveza, D., and D. Kiritsis. 2014. Ontology-Based Approach for Context Modeling in Enterprise Applications. Computers in Industry 65 (9): 1218–1231. https://doi.org/10.1016/j.compind.2014.07.007.

    Article  Google Scholar 

  • Obitko, M., and V. Mrk. 2002. Ontologies for Multi-agent Systems in Manufacturing Domain. In Proceedings – International Workshop on Database and Expert Systems Applications, DEXA. IEEE, 2002–Janua, pp. 597–602. https://doi.org/10.1109/DEXA.2002.1045963.

  • OMG (Object Management Group). 2010. UML profile for MARTE Object Management Group.

    Google Scholar 

  • Personnic, G. 2002. Asaac: The Way to Flying Military Open Systems. 3rd European Systems Engineering Conference Systems Engineering: A focus of European Expertise Pierre Baudis Congress Centre, Toulouse, 21st–24th May 2002.

    Google Scholar 

  • Provan, G., and Y.-L. Chen. 1999. Model-Based Diagnosis and Control Reconfiguration for Discrete Event Systems: An Integrated Approach. In Proceedings of the 38th IEEE Conference on Decision and Control, pp. 1762–1768. https://doi.org/10.1109/CDC.1999.830888.

  • Qasim, L., A.M. Hein, S. Olaru, et al. 2019a. An Overall Ontology for System Reconfiguration Using Model-Based System Engineering. Submitted to IEEE Transactions on Systems, Man, and Cybernetics: Systems.

    Google Scholar 

  • Qasim, L., A.M. Hein, M. Jankovic, et al. 2019b. Towards a Reconfiguration Framework for Systems Engineering Integrating Use Phase Data. In Proceedings of ICED 2019, the 22nd International Conference on Engineering Design: Responsible Design for Our Future, Delft, Netherlands, 05.-08.08. 2019.

    Google Scholar 

  • Regulin, D., et al. 2016. Model Based Design of Knowledge Bases in Multi Agent Systems for Enabling Automatic Reconfiguration Capabilities Of Material Flow Modules. In IEEE International Conference on Automation Science and Engineering, pp. 133–140. https://doi.org/10.1109/COASE.2016.7743371.

  • Rodriguez, I.B., et al. 2009. A Model-Based Multi-level Architectural Reconfiguration Applied to Adaptability Management in Context-Aware Cooperative Communication Support Systems. In 2009 Joint Working IEEE/IFIP Conference on Software Architecture and European Conference on Software Architecture. WICSA/ECSA 2009: 353–356. https://doi.org/10.1109/WICSA.2009.5290829.

    Article  Google Scholar 

  • Saxena, T., et al. 2010. Enabling Self-Management by Using Model-Based Design Space Exploration. In Seventh IEEE International Conference and Workshops on Engineering of Autonomic and Autonomous Systems, pp. 137–144. https://doi.org/10.1109/EASe.2010.22.

  • Walden, D., and G. Roedler. 2015. INCOSE Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities, 4th ed. Available at: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118999401.html.

  • Walsh, D., F. Bordeleau, and B. Selic. 2005. A Domain Model for Dynamic System Reconfiguration. pp. 553–567. https://doi.org/10.1007/11557432_42.

  • ———. 2006. Change Types of Dynamic System Reconfiguration. in Proceedings of the International Symposium and Workshop on Engineering of Computer Based Systems, pp. 3–12. https://doi.org/10.1109/ECBS.2006.28.

  • Witt, R., et al. 2013. Implementation of Fault Management Capabilities for the Flying Laptop Small Satellite Project through a Failure-Aware System Model. pp. 1–16. https://doi.org/10.2514/6.2013-4661.

  • Wymore, A.W. 1993. Model-BASED Systems Engineering. CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara Qasim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qasim, L., Hein, A.M., Olaru, S., Jankovic, M., Garnier, JL. (2022). An Ontology for System Reconfiguration: Integrated Modular Avionics IMA Case Study. In: Madni, A.M., Boehm, B., Erwin, D., Moghaddam, M., Sievers, M., Wheaton, M. (eds) Recent Trends and Advances in Model Based Systems Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-82083-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82083-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82082-4

  • Online ISBN: 978-3-030-82083-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics