Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018). https://doi.org/10.1109/ACCESS.2018.2870052
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), 1–46 (2015). https://doi.org/10.1371/journal.pone.0130140
Arrieta, A.B., et al.: Explainable explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58(December 2019), 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012
Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017, pp. 3319–3327. IEEE Computer Society (2017). https://doi.org/10.1109/CVPR.2017.354
Cai, H., Zhu, L., Han, S.: ProxylessNAS: direct neural architecture search on target task and hardware. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=HylVB3AqYm
Calegari, R., Ciatto, G., Omicini, A.: On the integration of symbolic and sub-symbolic techniques for XAI: a survey. Intelligenza Artificiale 14(1), 7–32 (2020). https://doi.org/10.3233/IA-190036
Casale, F.P., Gordon, J., Fusi, N.: Probabilistic neural architecture search. CoRR abs/1902.05116 (2019). http://arxiv.org/abs/1902.05116
Chen, S., Bateni, S., Grandhi, S., Li, X., Liu, C., Yang, W.: DENAS: automated rule generation by knowledge extraction from neural networks. In: Devanbu, P., Cohen, M.B., Zimmermann, T. (eds.) ESEC/FSE 2020: 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Virtual Event, USA, 8–13 November 2020, pp. 813–825. ACM (2020). https://doi.org/10.1145/3368089.3409733
Chu, X., Zhang, B., Xu, R.: Multi-objective reinforced evolution in mobile neural architecture search. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12538, pp. 99–113. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66823-5_6
CrossRef
Google Scholar
Ciatto, G., Schumacher, M.I., Omicini, A., Calvaresi, D.: Agent-based explanations in AI: towards an abstract framework. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) EXTRAAMAS 2020. LNCS (LNAI), vol. 12175, pp. 3–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51924-7_1
CrossRef
Google Scholar
Dosilovic, F.K., Brcic, M., Hlupic, N.: Explainable artificial intelligence: a survey. In: Skala, K., et al. (eds.) 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2018, Opatija, Croatia, 21–25 May 2018, pp. 210–215. IEEE (2018). https://doi.org/10.23919/MIPRO.2018.8400040
Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20, 55:1–55:21 (2019). http://jmlr.org/papers/v20/18-598.html
Golovko, V., Egor, M., Brich, A., Sachenko, A.: A shallow convolutional neural network for accurate handwritten digits classification. In: Krasnoproshin, V.V., Ablameyko, S.V. (eds.) PRIP 2016. CCIS, vol. 673, pp. 77–85. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54220-1_8
CrossRef
Google Scholar
Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Computi. Surv. 51(5) (2018). https://doi.org/10.1145/3236009
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90
Hecht-Nielsen, R.: Theory of the backpropagation neural network. Neural Netw. 1(Supplement-1), 445–448 (1988). https://doi.org/10.1016/0893-6080(88)90469-8
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017). http://arxiv.org/abs/1704.04861
Janzing, D., Minorics, L., Blöbaum, P.: Feature relevance quantification in explainable AI: a causal problem. In: Chiappa, S., Calandra, R. (eds.) The 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020). Proceedings of Machine Learning Research, vol. 108, pp. 2907–2916 (2020). http://proceedings.mlr.press/v108/janzing20a.html
Kaya, Y., Hong, S., Dumitras, T.: Shallow-deep networks: understanding and mitigating network overthinking. In: Chaudhuri, K., Salakhutdinov, R. (eds.) 36th International Conference on Machine Learning, ICML 2019, 9–15 June 2019, Long Beach, CA, USA. Proceedings of Machine Learning Research, vol. 97, pp. 3301–3310 (2019). http://proceedings.mlr.press/v97/kaya19a.html
Li, J., Liang, X., Shen, S., Xu, T., Feng, J., Yan, S.: Scale-aware fast R-CNN for pedestrian detection. IEEE Trans. Multimedia 20(4), 985–996 (2018). https://doi.org/10.1109/TMM.2017.2759508
Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31–57 (2018). https://doi.org/10.1145/3236386.3241340
Liu, C., et al.: Progressive neural architecture search. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 19–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_2
CrossRef
Google Scholar
Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=S1eYHoC5FX
Liu, J., Tripathi, S., Kurup, U., Shah, M.: Pruning algorithms to accelerate convolutional neural networks for edge applications: a survey. CoRR abs/2005.04275 (2020). https://arxiv.org/abs/2005.04275
Luo, R., Tan, X., Wang, R., Qin, T., Chen, E., Liu, T.: Neural architecture search with GBDT. CoRR abs/2007.04785 (2020). https://arxiv.org/abs/2007.04785
Miller, G.F., Todd, P.M., Hegde, S.U.: Designing neural networks using genetic algorithms. In: Schaffer, J.D. (ed.) 3rd International Conference on Genetic Algorithms, Fairfax, VA, USA, pp. 379–384. Morgan Kaufmann, June 1989
Google Scholar
Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 4293–4302. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.465
Nguyen, A.M., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, Barcelona, Spain, 5–10 December 2016, pp. 3387–3395 (2016). https://proceedings.neurips.cc/paper/2016/hash/5d79099fcdf499f12b79770834c0164a-Abstract.html
Nguyen, A.M., Yosinski, J., Clune, J.: Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks. CoRR abs/1602.03616 (2016). http://arxiv.org/abs/1602.03616
O’Shea, K., Nash, R.: An introduction to convolutional neural networks. CoRR abs/1511.08458 (2015). http://arxiv.org/abs/1511.08458
Peng, S., Ji, F., Lin, Z., Cui, S., Chen, H., Zhang, Y.: MTSS: learn from multiple domain teachers and become a multi-domain dialogue expert. In: AAAI Conference on Artificial Intelligence (AAAI-20 Technical Tracks 5), vol. 34, pp. 8608–8615. AAAI Press (2020). https://doi.org/10.1609/aaai.v34i05.6384
Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: AAAI Conference on Artificial Intelligence (AAAI-19, IAAI-19, EAAI-20), vol. 33, pp. 4780–4789. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33014780
Ren, S., He, K., Girshick, R.B., Zhang, X., Sun, J.: Object detection networks on convolutional feature maps. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1476–1481 (2017). https://doi.org/10.1109/TPAMI.2016.2601099
Rolnick, D., Tegmark, M.: The power of deeper networks for expressing natural functions. In: 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April– 3 May 2018, Conference Track Proceedings. OpenReview.net (2018). https://openreview.net/forum?id=SyProzZAW
Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Networks Learn. Syst. 28(11), 2660–2673 (2017). https://doi.org/10.1109/TNNLS.2016.2599820
Setiono, R., Leow, W.K., Zurada, J.M.: Extraction of rules from artificial neural networks for nonlinear regression. IEEE Trans. Neural Netw. 13(3), 564–577 (2002). https://doi.org/10.1109/TNN.2002.1000125
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1409.1556
Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 2820–2828. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.00293
Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. CoRR abs/1905.11946 (2019). http://arxiv.org/abs/1905.11946
Thrun, S.: Extracting rules from artificial neural networks with distributed representations. In: 7th International Conference on Neural Information Processing Systems (NIPS 1994), pp. 505–512. MIT Press (1994)
Google Scholar
Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): towards medical XAI. CoRR abs/1907.07374 (2019). http://arxiv.org/abs/1907.07374
Wistuba, M., Rawat, A., Pedapati, T.: A survey on neural architecture search. CoRR abs/1905.01392 (2019). http://arxiv.org/abs/1905.01392
Wu, B., et al.: FBNet: hardware-aware efficient convnet design via differentiable neural architecture search. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 10734–10742. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.01099
Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. CoRR abs/1708.07747 (2017). http://arxiv.org/abs/1708.07747
Yang, Z., et al.: CARS: continuous evolution for efficient neural architecture search. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, 13–19 June 2020, pp. 1826–1835. IEEE (2020). https://doi.org/10.1109/CVPR42600.2020.00190
Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., Hutter, F.: NAS-Bench-101: towards reproducible neural architecture search. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, California, USA, 9–15 June 2019. Proceedings of Machine Learning Research, vol. 97, pp. 7105–7114. PMLR (2019). http://proceedings.mlr.press/v97/ying19a.html
Yosinski, J., Clune, J., Nguyen, A.M., Fuchs, T.J., Lipson, H.: Understanding neural networks through deep visualization. CoRR abs/1506.06579 (2015). http://arxiv.org/abs/1506.06579
Zhang, Q., Wu, Y.N., Zhu, S.: Interpretable convolutional neural networks. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018. pp. 8827–8836. IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00920
Zhang, Q., Yang, Y., Ma, H., Wu, Y.N.: Interpreting CNNs via decision trees. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, 16–20 June 2019, pp. 6261–6270. Computer Vision Foundation/IEEE (2019). https://doi.org/10.1109/CVPR.2019.00642
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: 5th International Conference on Learning Representations (ICLR 2017). Toulon, France, 24–26 April 2017. https://openreview.net/forum?id=r1Ue8Hcxg