Skip to main content

Velocity-Based Training for Monitoring Training Load and Assessing Training Effects

  • Chapter
  • First Online:
Resistance Training Methods

Abstract

Currently, velocity-based training (VBT) is one of the hot topics in sport science and among strength and conditioning coaches. However, its wide use has spread some misunderstandings of the fundamental concepts of this methodology. It should be highlighted that this is not a new training method, but rather, a new approach that enables more accurate, frequent, and objective control of resistance training intensity and volume. The VBT approach is no other thing than recording lifting velocity every repetition during resistance training. The quantification of actual repetition velocities achieved during resistance training sessions provides a more consistent and precise understanding of training effects, opening up the possibility to establish causal relationships between stimuli and response, which is one of the main and most important targets of research and practice in sport science. As such, VBT can be defined as a resistance training method that uses movement velocity to improve training process and enhance training effects, via a deeper understanding of the input signal (actual training load) and the output signal (changes in performance). Through this chapter we will see how VBT contributes to improve the resistance training methodology, as well as discuss its potential benefits, limitations, and practical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balsalobre-Fernández C, García-Ramos A, Jiménez-Reyes P (2018) Load–velocity profiling in the military press exercise: effects of gender and training. Int J Sports Sci Coaching 13(5):743–750

    Article  Google Scholar 

  • Behm DG, Sale DG (1993) Intended rather than actual movement velocity determines velocity-specific training response. J Appl (1985) Physiol 74(1):359–368

    Google Scholar 

  • Benavides-Ubric A, Diez-Fernandez DM, Rodriguez-Perez MA, Ortega-Becerra M, Pareja-Blanco F (2020) Analysis of the load-velocity relationship in deadlift exercise. J Sports Sci Med 19(3):452–459

    Google Scholar 

  • Bird SP, Tarpenning KM, Marino FE (2005) Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med 35(10):841–851

    Article  Google Scholar 

  • Bottinelli R, Canepari M, Pellegrino MA, Reggiani C (1996) Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol 495(Pt 2):573–586

    Article  Google Scholar 

  • Braith RW, Graves JE, Leggett SH, Pollock ML (1993) Effect of training on the relationship between maximal and submaximal strength. Med Sci Sports Exerc 25(1):132–138

    Article  Google Scholar 

  • Brzycki M (1993) Strength testing-predicting a one-rep max from reps-to-fatigue. J Phys Edu Recreation Dance 64(1):88–90

    Article  Google Scholar 

  • Buckner SL, Jessee MB, Mattocks KT, Mouser JG, Counts BR, Dankel SJ et al (2017) Determining strength: a case for multiple methods of measurement. Sports Med 47(2):193–195

    Article  Google Scholar 

  • Campos GE, Luecke TJ, Wendeln HK, Toma K, Hagerman FC, Murray TF et al (2002) Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol 88(1–2):50–60

    Article  Google Scholar 

  • Chapman PP, Whitehead JR, Binkert RH (1998) The 225–1b reps-to-fatigue test as a submaximal estimate of 1-RM bench press performance in college football players. J Strength Conditioning Res 12(4):258–261

    Google Scholar 

  • Conceicao F, Fernandes J, Lewis M, Gonzalez-Badillo JJ, Jimenez-Reyes P (2016) Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci 34(12):1099–1106

    Article  Google Scholar 

  • Cunanan AJ, DeWeese BH, Wagle JP, Carroll KM, Sausaman R, Hornsby WG 3rd et al (2018) The general adaptation syndrome: a foundation for the concept of periodization. Sports Med 48(4):787–797

    Article  Google Scholar 

  • de Hoyo M, Nunez FJ, Borja S, Gonzalo-Skok O, Muñoz-López A, Romero-Boza S et al (2019) Predicting loading intensity measuring velocity in barbell hip thrust exercise. J Strength Cond Res

    Google Scholar 

  • Desmedt JE, Godaux E (1977) Ballistic contractions in man: characteristic recruitment pattern of single motor units of the tibialis anterior muscle. J Physiol 264(3):673–693

    Article  Google Scholar 

  • Doma K, Deakin GB, Schumann M, Bentley DJ (2019) Training considerations for optimising endurance development: an alternate concurrent training perspective. Sports Med 49(5):669–682

    Article  Google Scholar 

  • Dorrell HF, Smith MF, Gee TI (2020) Comparison of velocity-based and traditional percentage-based loading methods on maximal strength and power adaptations. J Strength Cond Res 34(1):46–53

    Article  Google Scholar 

  • Eddens L, van Someren K, Howatson G (2018) The role of intra-session exercise sequence in the interference effect: a systematic review with meta-analysis. Sports Med 48(1):177–188

    Article  Google Scholar 

  • Fernandes JFT, Lamb KL, Twist C (2018) A comparison of load-velocity and load-power relationships between well-trained young and middle-aged males during three popular resistance exercises. J Strength Cond Res 32(5):1440–1447

    Article  Google Scholar 

  • Fry AC (2004) The role of resistance exercise intensity on muscle fibre adaptations. Sports Med 34(10):663–679

    Article  MathSciNet  Google Scholar 

  • Garcia-Pallares J, Izquierdo M (2011) Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Med 41(4):329–343

    Article  Google Scholar 

  • Garcia-Ramos A, Pestana-Melero FL, Perez-Castilla A, Rojas FJ, Haff GG (2018) Differences in the load-velocity profile between 4 bench-press variants. Int J Sports Physiol Perform 13(3):326–331

    Article  Google Scholar 

  • García-Ramos A, Suzovic D, Pérez-Castilla A (2019) The load-velocity profiles of three upper-body pushing exercises in men and women. Sports Biomechanics 1–13

    Google Scholar 

  • Goldberg AL, Etlinger JD, Goldspink DF, Jablecki C (1975) Mechanism of work-induced hypertrophy of skeletal muscle. Med Sci Sports 7(3):185–198

    Google Scholar 

  • Gonzalez-Badillo JJ, Sánchez-Medina L (2010) Movement velocity as a measure of loading intensity in resistance training. Int J Sports Med 31(5):347–352

    Article  Google Scholar 

  • Gonzalez-Badillo JJ, Marques MC, Sánchez-Medina L (2011) The importance of movement velocity as a measure to control resistance training intensity. J Hum Kinet 29A:15–19

    Article  Google Scholar 

  • Gonzalez-Badillo JJ, Rodriguez-Rosell D, Sánchez-Medina L, Gorostiaga EM, Pareja-Blanco F (2014) Maximal intended velocity training induces greater gains in bench press performance than deliberately slower half-velocity training. Eur J Sport Sci 1–10

    Google Scholar 

  • Gonzalez-Badillo JJ, Yanez-Garcia JM, Mora-Custodio R, Rodriguez-Rosell D (2017) Velocity loss as a variable for monitoring resistance exercise. Int J Sports Med 38(3):217–225

    Article  Google Scholar 

  • Haff GG, Triplett NT (2015) Essentials of strength training and conditioning, 4th edn. Human Kinetics

    Google Scholar 

  • Harries SK, Lubans DR, Callister R (2015) Systematic review and meta-analysis of linear and undulating periodized resistance training programs on muscular strength. J Strength Cond Res 29(4):1113–1125

    Article  Google Scholar 

  • Hickson RC (1980) Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol 45(2–3):255–263

    Article  Google Scholar 

  • Izquierdo M, Gonzalez-Badillo JJ, Hakkinen K, Ibanez J, Kraemer WJ, Altadill A et al (2006) Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. Int J Sports Med 27(9):718–724

    Article  Google Scholar 

  • Kraemer WJ, Ratamess NA (2004) Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc 36(4):674–688

    Article  Google Scholar 

  • Loturco I, Ugrinowitsch C, Roschel H, Lopes Mellinger A, Gomes F, Tricoli V et al (2013) Distinct temporal organizations of the strength- and power-training loads produce similar performance improvements. J Strength Cond Res 27(1):188–194

    Article  Google Scholar 

  • Loturco I, Pereira LA, Cal Abad CC, Gil S, Kitamura K, Kobal R et al (2016) Using bar velocity to predict the maximum dynamic strength in the half-squat exercise. Int J Sports Physiol Perform 11(5):697–700

    Article  Google Scholar 

  • Loturco I, Kobal R, Moraes JE, Kitamura K, Cal Abad CC, Pereira LA et al (2017) Predicting the maximum dynamic strength in bench press: the high precision of the bar velocity approach. J Strength Cond Res 31(4):1127–1131

    Article  Google Scholar 

  • Loturco I, Pereira LA, Freitas TT, Bishop C, Pareja-Blanco F, McGuigan MR (2021a) Maximum strength, relative strength, and strength deficit: relationships with performance and differences between elite sprinters and professional rugby union players. Int J Sports Physiol Perform 1–6

    Google Scholar 

  • Loturco I, Suchomel T, Kobal R, Arruda AFS, Guerriero A, Pereira LA et al (2021b) Force-velocity relationship in three different variations of prone row exercises. J Strength Cond Res 35(2):300–309

    Article  Google Scholar 

  • Loturco I, McGuigan M, Freitas TT, Valenzuela P, Pereira LA, Pareja-Blanco F (2021c) Performance and reference data in the jump squat at different relative loads in elite sprinters, rugby players, and soccer players. Biol Sport 38(2):219–227

    Article  Google Scholar 

  • Martinez-Cava A, Moran-Navarro R, Sánchez-Medina L, Gonzalez-Badillo JJ, Pallares JG (2019) Velocity- and power-load relationships in the half, parallel and full back squat. J Sports Sci 37(10):1088–1096

    Article  Google Scholar 

  • Moran-Navarro R, Perez CE, Mora-Rodriguez R, de la Cruz-Sanchez E, Gonzalez-Badillo JJ, Sánchez-Medina L et al (2017) Time course of recovery following resistance training leading or not to failure. Eur J Appl Physiol 117(12):2387–2399

    Article  Google Scholar 

  • Moran-Navarro R, Martinez-Cava A, Sánchez-Medina L, Mora-Rodriguez R, Gonzalez-Badillo JJ, Pallares JG (2019) Movement velocity as a measure of level of effort during resistance exercise. J Strength Cond Res 33(6):1496–1504

    Article  Google Scholar 

  • Nagata A, Doma K, Yamashita D, Hasegawa H, Mori S (2020) The effect of augmented feedback type and frequency on velocity-based training-induced adaptation and retention. J Strength Cond Res 34(11):3110–3117

    Article  Google Scholar 

  • Najera-Ferrer P, Perez-Caballero C, Gonzalez-Badillo JJ, Pareja-Blanco F (2021) Effects of exercise sequence and velocity loss threshold during resistance training on following endurance and strength performance during concurrent training. Int J Sports Physiol Perform 1–7

    Google Scholar 

  • Niewiadomski W, Laskowska D, Gąsiorowska A, Cybulski G, Strasz A, Langfort J (2008) Determination and prediction of one repetition maximum (1RM): safety considerations J Hum Kinet 19(1):109

    Google Scholar 

  • Ortega-Becerra M, Sánchez-Moreno M, Pareja-Blanco F (2021) Effects of cluster set configuration on mechanical performance and neuromuscular activity. J Strength Cond Res 35(2):310–317

    Article  Google Scholar 

  • Pareja-Blanco F, Rodriguez-Rosell D, Sánchez-Medina L, Gorostiaga EM, Gonzalez-Badillo JJ (2014) Effect of movement velocity during resistance training on neuromuscular performance. Int J Sports Med 35(11):916–924

    Article  Google Scholar 

  • Pareja-Blanco F, Rodriguez-Rosell D, Sánchez-Medina L, Sanchis-Moysi J, Dorado C, Mora-Custodio R et al (2017a) Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand J Med Sci Sports 27(7):724–735

    Article  Google Scholar 

  • Pareja-Blanco F, Sánchez-Medina L, Suarez-Arrones L, Gonzalez-Badillo JJ (2017b) Effects of velocity loss during resistance training on performance in professional soccer players. Int J Sports Physiol Perform 12(4):512–519

    Article  Google Scholar 

  • Pareja-Blanco F, Villalba-Fernandez A, Cornejo-Daza PJ, Sanchez-Valdepenas J, Gonzalez-Badillo JJ (2019) Time course of recovery following resistance exercise with different loading magnitudes and velocity loss in the set. Sports 7(3)

    Google Scholar 

  • Pareja-Blanco F, Alcazar J, Sánchez-Valdepeñas J, Cornejo-Daza PJ, Piqueras-Sanchiz F, Mora-Vela R et al (2020a) Velocity loss as a critical variable determining the adaptations to strength training. Med Sci Sports Exerc 52(8):1752–1762

    Google Scholar 

  • Pareja-Blanco F, Rodriguez-Rosell D, Aagaard P, Sánchez-Medina L, Ribas-Serna J, Mora-Custodio R et al (2020b) Time course of recovery from resistance exercise with different set configurations. J Strength Cond Res 34(10):2867–2876

    Article  Google Scholar 

  • Pareja-Blanco F, Alcazar J, Cornejo-Daza PJ, Sanchez-Valdepenas J, Rodriguez-Lopez C, Hidalgo-de Mora J et al (2020c) Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations and muscle hypertrophy. Scand J Med Sci Sports

    Google Scholar 

  • Pareja-Blanco F, Walker S, Häkkinen K (2020d) Validity of using velocity to estimate intensity in resistance exercises in men and women. Int J Sports Med 41:1047–1055

    Google Scholar 

  • Perez-Castilla A, Garcia-Ramos A, Padial P, Morales-Artacho AJ, Feriche B (2018) Effect of different velocity loss thresholds during a power-oriented resistance training program on the mechanical capacities of lower-body muscles. J Sports Sci 36(12):1331–1339

    Article  Google Scholar 

  • Pestana-Melero FL, Haff GG, Rojas FJ, Perez-Castilla A, Garcia-Ramos A (2018) Reliability of the load-velocity relationship obtained through linear and polynomial regression models to predict the 1-repetition maximum load. J Appl Biomech 34(3):184–190

    Article  Google Scholar 

  • Reynolds JM, Gordon TJ, Robergs RA (2006) Prediction of one repetition maximum strength from multiple repetition maximum testing and anthropometry. J Strength Cond Res 20(3):584–592

    Google Scholar 

  • Rhea MR, Ball SD, Phillips WT, Burkett LN (2002) A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength. J Strength Cond Res 16(2):250–255

    Google Scholar 

  • Rhea MR, Phillips WT, Burkett LN, Stone WJ, Ball SD, Alvar BA et al (2003) A comparison of linear and daily undulating periodized programs with equated volume and intensity for local muscular endurance. J Strength Cond Res 17(1):82–87

    Google Scholar 

  • Richens B, Cleather DJ (2014) The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes. Biol Sport 31(2):157–161

    Article  Google Scholar 

  • Riscart-Lopez J, Rendeiro-Pinho G, Mil-Homens P, Soares-daCosta R, Loturco I, Pareja-Blanco F, Leon-Prados JA (2020) Effects of four different velocity-based training programming models on strength gains and physical performance. J Strength Cond Res (Epub Ahead of Print)

    Google Scholar 

  • Riscart-Lopez J, Rendeiro-Pinho G, Mil-Homens P, Soares-daCosta R, Loturco I, Pareja-Blanco F et al (2021) Effects of four different velocity-based training programming models on strength gains and physical performance. J Strength Cond Res 35(3):596–603

    Article  Google Scholar 

  • Rodríguez-Rosell D (2017) Movement velocity as a critical variable for prescribing and monitoring resistance exercise, and as a determinant factor of the resistance training induced-adaptations. Doctoral dissertation, Supervised by Gonzalez-Badillo, JJ, Universidad Pablo de Olavide

    Google Scholar 

  • Rodriguez-Rosell D, Yanez-Garcia JM, Torres-Torrelo J, Mora-Custodio R, Marques MC, Gonzalez-Badillo JJ (2018) Effort index as a novel variable for monitoring the level of effort during resistance exercises. J Strength Cond Res 32(8):2139–2153

    Article  Google Scholar 

  • Rodriguez-Rosell D, Yanez-Garcia JM, Sánchez-Medina L, Mora-Custodio R, Gonzalez-Badillo JJ (2020a) Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. J Strength Cond Res 34(9):2537–2547

    Article  Google Scholar 

  • Rodriguez-Rosell D, Yanez-Garcia JM, Mora-Custodio R, Torres-Torrelo J, Ribas-Serna J, Gonzalez-Badillo JJ (2020b) Role of the effort index in predicting neuromuscular fatigue during resistance exercises. J Strength Cond Res

    Google Scholar 

  • Rodriguez-Rosell D, Yanez-Garcia JM, Mora-Custodio R, Pareja-Blanco F, Ravelo-Garcia AG, Ribas-Serna J et al (2020c) Velocity-based resistance training: impact of velocity loss in the set on neuromuscular performance and hormonal response. Appl Physiol Nutr Metab (Epub Ahead of Print)

    Google Scholar 

  • Rodriguez-Rosell D, Martinez-Cava A, Yanez-Garcia JM, Hernandez-Belmonte A, Mora-Custodio R, Moran-Navarro R et al (2021) Linear programming produces greater, earlier and uninterrupted neuromuscular and functional adaptations than daily-undulating programming after velocity-based resistance training. Physiol Behav 113337

    Google Scholar 

  • Rontu JP, Hannula MI, Leskinen S, Linnamo V, Salmi JA (2010) One-repetition maximum bench press performance estimated with a new accelerometer method. J Strength Cond Res 24(8):2018–2025

    Article  Google Scholar 

  • Sánchez-Medina L (2010) Movement velocity as a determinant of the level of effort in resistance training. Doctoral dissertation, Supervised by Gonzalez-Badillo, JJ, Universidad Pablo de Olavide

    Google Scholar 

  • Sánchez-Medina L, Gonzalez-Badillo JJ (2011) Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc 43(9):1725–1734

    Article  Google Scholar 

  • Sánchez-Medina L, Gonzalez-Badillo JJ, Perez CE, Pallares JG (2014) Velocity- and power-load relationships of the bench pull vs. bench press exercises. Int J Sports Med 35(3):209–216

    Google Scholar 

  • Sánchez-Medina L, Pallarés JG, Pérez CE, Morán-Navarro R, González-Badillo JJ (2017) Estimation of relative load from bar velocity in the full back squat exercise. Sports Med Int Open 01(02):E80–E88

    Article  Google Scholar 

  • Sánchez-Moreno M, Rodriguez-Rosell D, Pareja-Blanco F, Mora-Custodio R, Gonzalez-Badillo JJ (2017) Movement velocity as indicator of relative intensity and level of effort attained during the set in pull-up exercise. Int J Sports Physiol Perform 12(10):1378–1384

    Article  Google Scholar 

  • Sánchez-Moreno M, Cornejo-Daza PJ, Gonzalez-Badillo JJ, Pareja-Blanco F (2020) Effects of velocity loss during body mass prone-grip pull-up training on strength and endurance performance. J Strength Cond Res 34(4):911–917

    Article  Google Scholar 

  • Sánchez-Moreno M, Rendeiro-Pinho G, Mil-Homens PV, Pareja-Blanco F (2021a) Monitoring training volume through maximal number of repetitions or velocity-based approach. Int J Sports Physiol Perform 1–8

    Google Scholar 

  • Sánchez-Moreno M, Rodriguez-Rosell D, Diaz-Cueli D, Pareja-Blanco F, Gonzalez-Badillo JJ (2021b) Effects of velocity loss threshold within resistance training during concurrent training on endurance and strength performance. Int J Sports Physiol Perform (Epub Ahead of Print)

    Google Scholar 

  • Schilling BK, Falvo MJ, Chiu LZ (2008) Force-velocity, impulse-momentum relationships: implications for efficacy of purposefully slow resistance training. J Sports Sci Med 7(2):299–304

    Google Scholar 

  • Schiotz MK, Potteiger JA, Huntsinger PG, Donald C, Denmark LC (1998) The short-term effects of periodized and constant-intensity training on body composition, strength, and performance. J Strength Conditioning Res 12(3):173–178

    Google Scholar 

  • Schoenfeld BJ (2010) The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res 24(10):2857–2872

    Article  Google Scholar 

  • Schoenfeld BJ, Ogborn D, Krieger JW (2017) Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. J Sports Sci 35(11):1073–1082

    Article  Google Scholar 

  • Scott BR, Duthie GM, Thornton HR, Dascombe BJ (2016) Training monitoring for resistance exercise: theory and applications. Sports Med 46(5):687–698

    Article  Google Scholar 

  • Spiering BA, Kraemer WJ, Anderson JM, Armstrong LE, Nindl BC, Volek JS et al (2008) Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med 38(7):527–540

    Article  Google Scholar 

  • Suchomel TJ, Nimphius S, Bellon CR, Stone MH (2018) The importance of muscular strength: training considerations. Sports Med 48(4):765–785

    Article  Google Scholar 

  • Torrejón A, Balsalobre-Fernández C, Haff GG, García-Ramos A (2019) The load-velocity profile differs more between men and women than between individuals with different strength levels. Sports Biomechanics 18(3):245–255

    Article  Google Scholar 

  • Weakley J, Ramirez-Lopez C, McLaren S, Dalton-Barron N, Weaving D, Jones B et al (2019a) The effects of 10%, 20%, and 30% velocity loss thresholds on kinetic, kinematic, and repetition characteristics during the Barbell Back Squat. Int J Sports Physiol Perform 1–9

    Google Scholar 

  • Weakley JJS, Wilson KM, Till K, Read DB, Darrall-Jones J, Roe GAB et al (2019b) Visual feedback attenuates mean concentric barbell velocity loss and improves motivation, competitiveness, and perceived workload in male adolescent athletes. J Strength Cond Res 33(9):2420–2425

    Article  Google Scholar 

  • Williams TD, Tolusso DV, Fedewa MV, Esco MR (2017) Comparison of periodized and non-periodized resistance training on maximal strength: a meta-analysis. Sports Med 47(10):2083–2100

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Pareja-Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pareja-Blanco, F., Loturco, I. (2022). Velocity-Based Training for Monitoring Training Load and Assessing Training Effects. In: Muñoz-López, A., Taiar, R., Sañudo, B. (eds) Resistance Training Methods. Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-81989-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81989-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81988-0

  • Online ISBN: 978-3-030-81989-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics