Skip to main content

Non-Archimedean Models of Morphogenesis

  • Chapter
  • First Online:
Advances in Non-Archimedean Analysis and Applications

Abstract

We study a p-adic reaction-diffusion system and the associated Turing patterns. We establish an instability criteria and show that the Turing patterns are not classical patterns consisting of alternating domains. Instead of this, a Turing pattern consists of several domains (clusters), each of them supporting a different pattern but with the same parameter values. This type of patterns are typically produced by reaction-diffusion equations on large networks.

The author was partially supported by Conacyt Grant No. 217367 (Mexico), and by the Debnath Endowed Professorship (UTRGV, USA)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Albeverio, A. Yu. Khrennikov, V. M. Shelkovich, Theory of p-adic distributions: linear and nonlinear models, London Mathematical Society Lecture Note Series, 370 (Cambridge University Press, 2010).

    Google Scholar 

  2. B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan, Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type, Discrete Contin. Dyn. Syst., Ser. B 23 (2018), No. 9, 3787–3797.

    MathSciNet  MATH  Google Scholar 

  3. Barrat, A., Barthélemy, M. & Vespignani, A. Dynamical Processes on Complex Networks (Cambridge Univ. Press, 2008).

    Google Scholar 

  4. Berg Christian, Forst Gunnar, Potential theory on locally compact abelian groups (Springer-Verlag, New York-Heidelberg, 1975).

    MATH  Google Scholar 

  5. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics, Phys. Rep. 424 (2006), no. 4–5, 175–308.

    Article  MathSciNet  Google Scholar 

  6. Soon-Yeong Chung, Jae-Hwang Lee, Blow-up for discrete reaction-diffusion equations on networks, Appl. Anal. Discrete Math. 9 (2015), No. 1, 103–119.

    Article  MathSciNet  Google Scholar 

  7. Paul R. Halmos, Measure Theor (D. Van Nostrand Company, 1950).

    Google Scholar 

  8. Horsthemke, W., Lam, K. & Moore, P. K. Network topology and Turing instability in small arrays of diffusively coupled reactors, Phys. Lett. A 328, 444–451 (2004)

    Article  Google Scholar 

  9. Yusuke Ide, Hirofumi Izuhara, Takuya Machida, Turing instability in reaction-diffusion models on complex networks, Physica A 457 (2016), 331–347.

    Article  MathSciNet  Google Scholar 

  10. Anatoly N. Kochubei, Pseudo-differential equations and stochastics over non-Archimedean fields (Marcel Dekker, 2001).

    Google Scholar 

  11. Andrei Khrennikov, Sergei Kozyrev, W. A. Zú ñiga-Galindo, Ultrametric Equations and its Applications, Encyclopedia of Mathematics and its Applications (168) (Cambridge University Press, 2018).

    Google Scholar 

  12. M. Mocarlo Zheng, Bin Shao, Qi Ouyang, Identifying network topologies that can generate Turing pattern, J. Theor. Biol. 408 (2016), 88–96.

    Article  Google Scholar 

  13. Moore, P. K. & Horsthemke, W. Localized patterns in homogeneous networks of diffusively coupled reactors, Physica D 206 (2005), 121–144 .

    Article  MathSciNet  Google Scholar 

  14. Delio Mugnolo, Semigroup methods for evolution equations on networks. Understanding Complex Systems (Springer, Cham, 2014).

    Google Scholar 

  15. J. D. Murra, Mathematical biology. II. Spatial models and biomedical applications. Third edition (Springer-Verlag, New York, 2003).

    Google Scholar 

  16. Hiroya Nakao, Alexander S. Mikhailov, Turing patterns in network-organized activator – inhibitor systems, Nature Physics 6 (2010), 544–550.

    Article  Google Scholar 

  17. H. G. Othmer, L. E. Scriven, Instability and dynamic pattern in cellular networks, J. Theor. Biol. 32 (1971), 507–537.

    Article  Google Scholar 

  18. H. G. Othmer, L. E. Scriven, Nonlinear aspects of dynamic pattern in cellular networks, J. Theor. Biol. 43 (1974), 83–112.

    Article  Google Scholar 

  19. Benoît Perthame, Parabolic equations in biology. Growth, reaction, movement and diffusion, Lecture Notes on Mathematical Modelling in the Life Sciences (Springer, Cham, 2015).

    Google Scholar 

  20. Angela Slavova, Pietro Zecca, Complex behavior of polynomial FitzHugh-Nagumo cellular neural network model, Nonlinear Anal., Real World Appl. 8 (2007), No. 4, 1331–1340.

    Article  MathSciNet  Google Scholar 

  21. M. H. Taibleson, Fourier analysis on local fields (Princeton University Press, 1975).

    Google Scholar 

  22. A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B 237 (1952), no. 641, 37–72.

    Article  MathSciNet  Google Scholar 

  23. Piet Van Mieghem, Graph spectra for complex networks (Cambridge University Press, Cambridge, 2011).

    MATH  Google Scholar 

  24. V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, p-adic analysis and mathematical physics (World Scientific, 1994).

    Google Scholar 

  25. Joachim von Below, José A. Lubary, Instability of stationary solutions of reaction-diffusion-equations on graphs, Result. Math. 68 (2015), No. 1–2, 171–201.

    Article  MathSciNet  Google Scholar 

  26. Hongyong Zhao, Xuanxuan Huang, Xuebing Zhang, Turing instability and pattern formation of neural networks with reaction-diffusion terms, Nonlinear Dyn. 76 (2014), No. 1, 115–124.

    Article  MathSciNet  Google Scholar 

  27. YusukeIde, Hirofumi Izuhara, Takuya Machida, Turing instability in reaction-diffusion models on complex networks, Phys. A 457 (2016), 331–347.

    Google Scholar 

  28. W. A. Zúñiga-Galindo, Reaction-diffusion equations on complex networks and Turing patterns, via p-adic analysis, J. Math. Anal. Appl. 491 (2020), no. 1, 124239, 39 pp.

    Google Scholar 

  29. W. A. Zúñiga-Galindo, Non-Archimedean Reaction-Ultradiffusion Equations and Complex Hierarchic Systems, Nonlinearity 31 (2018), no. 6, 2590–2616.

    Article  MathSciNet  Google Scholar 

  30. W. A. Zúñiga-Galindo, Pseudodifferential equations over non-Archimedean spaces, Lectures Notes in Mathematics 2174 (Springer, Cham, 2016).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Zúñiga-Galindo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zúñiga-Galindo, W.A. (2021). Non-Archimedean Models of Morphogenesis. In: Zúñiga-Galindo, W.A., Toni, B. (eds) Advances in Non-Archimedean Analysis and Applications. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham. https://doi.org/10.1007/978-3-030-81976-7_7

Download citation

Publish with us

Policies and ethics