Abstract
The development of various wearable flexible electronic devices has become an important trend of modern electronics. Fiber batteries are seen as one of the most promising power supplies for powering these wearable electronics due to their flexible, lightweight, breathable, and weavable features. The key to achieving flexible fiber batteries lies in constructing flexible electrodes. Among many promising materials, carbon nanotubes, which have the merits of lightweight, flexible, conductive as well as large specific surface area, are widely used to produce fiber electrodes for flexible fiber batteries. In this chapter, the preparation and the properties of carbon nanotube fibers are firstly described. Subsequently, the application of carbon nanotube fiber for flexible fiber lithium-ion batteries, lithium-metal batteries, aqueous-metal batteries, and other batteries are summarized from the aspects of working principle, fabrication process, and electrochemical properties. Finally, the issues of flexible fiber battery need to be conquered also have been discussed for future development.
Keywords
- Carbon nanotubes
- Flexible
- Fiber electrodes
- Fiber batteries
- Lithium-ion batteries
- Lithium-metal batteries
- Aqueous-metal batteries
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Iijima, S.: Helical microtubules of graphitic carbon. Nature. 354(6348), 56–58 (1991)
Dai, H.: Carbon nanotubes: opportunities and challenges. Surf. Sci. 500(1–3), 218–241 (2002)
Ebbesen, T.W., Lezec, H.J., Hiura, H., et al.: Electrical conductivity of individual carbon nanotubes. Nature. 382(6586), 54–56 (1996)
Yu, M.F., Files, B.S., Arepalli, S., et al.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)
Kim, P., Shi, L., Majumdar, A., et al.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87(21), 1–4 (2001)
Liao, M., Sun, H., Tao, X., et al.: Alignment of thermally conducting nanotubes making high-performance light-driving motors. ACS Appl. Mater. Interfaces. 10(31), 26765–26771 (2018)
Jiang, K., Li, Q., Fan, S.: Nanotechnology: spinning continuous carbon nanotube yarns. Nature. 419(6909), 801 (2002)
Li, Y.L., Kinloch, I.A., Windle, A.H.: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science. 304(5668), 276–278 (2004)
Vigolo, B., Penicaud, A., Coulon, C., et al.: Macroscopic fibers and ribbons of oriented carbon nanotubes. Science. 290(5495), 1331–1334 (2000)
Yoon, Y.H., Song, J.W., Kim, D., et al.: Transparent film heater using single-walled carbon nanotubes. Adv. Mater. 19(23), 4284–4287 (2007)
Amama, P.B., Pint, C.L., Kim, S.M., et al.: Influence of alumina type on the evolution and activity of alumina-supported fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano. 4(2), 895–904 (2010)
Jia, J.J., Zhao, J.N., Xu, G., et al.: A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon. 49(4), 1333–1339 (2011)
Zhang, Y.Y., Zou, G.F., Doorn, S.K., et al.: Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. ACS Nano. 3(8), 2157–2162 (2009)
Li, Q.W., Zhang, X.F., DePaula, R.F., et al.: Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv. Mater. 18(23), 3160–3163 (2006)
Hata, K., Futaba, D.N., Mizuno, K., et al.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science. 306(5700), 1362–1364 (2004)
Zhang, S., Zhu, L., Minus, M.L., et al.: Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition. J. Mater. Sci. 43(13), 4356–4362 (2008)
Huynh, C.P., Hawkins, S.C.: Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon. 48(4), 1105–1115 (2010)
Kuznetsov, A.A., Fonseca, A.F., Baughman, R.H., et al.: Structural model for dry-drawing of sheets and yarns from carbon nanotube forests. ACS Nano. 5(2), 985–993 (2011)
Peng, H., Jai, M., Li, Q., et al.: Vertically aligned pearl-like carbon nanotube arrays for fiber spinning. J. Am. Chem. Soc. 130, 1130–1131 (2008)
Wang, L., Xie, S., Wang, Z., et al.: Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4(2), 159–171 (2020)
Xu, X., Xie, S., Zhang, Y., et al.: The rise of fiber electronics. Angew. Chem. Int. Ed. 58(39), 13643–13653 (2019)
Chen, P., Xu, Y., He, S., et al.: Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat. Nanotechnol. 10(12), 1077–1083 (2015)
Ren, J., Li, L., Chen, C., et al.: Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25(8), 1155–1159 (2013)
Li, L., Wu, Z., Yuan, S., et al.: Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7(7), 2101–2122 (2014)
Ren, J., Zhang, Y., Bai, W., et al.: Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem. Int. Ed. 53(30), 7864–7869 (2014)
Zhang, Y., Zhao, Y., Cheng, X., et al.: Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew. Chem. Int. Ed. 54(38), 11177–11182 (2015)
Zhang, Y., Bai, W., Ren, J., et al.: Super-stretchy lithium-ion battery based on carbon nanotube fiber. J. Mater. Chem. A. 2(29), 11054–11059 (2014)
Xu, Y., Zhao, Y., Ren, J., et al.: An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance. Angew. Chem. Int. Ed. 55(28), 7979–7982 (2016)
Xu, Y., Zhang, Y., Guo, Z., et al.: Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem. Int. Ed. 54(51), 15390–15394 (2015)
Miao, M., McDonnell, J., Vuckovic, L., et al.: Poisson’s ratio and porosity of carbon nanotube dry-spun yarns. Carbon. 48(10), 2802–2811 (2010)
Weng, W., Sun, Q., Zhang, Y., et al.: Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett. 14(6), 3432–3438 (2014)
Zhang, Y., Bai, W., Cheng, X., et al.: Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem. Int. Ed. 53(52), 14564–14568 (2014)
Zhang, Y., Wang, Y., Wang, L., et al.: A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A. 4(23), 9002–9008 (2016)
Fang, X., Peng, H.: A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. Small. 11(13), 1488–1511 (2015)
Fang, X., Weng, W., Ren, J., et al.: A cable-shaped lithium sulfur battery. Adv. Mater. 28(3), 491–496 (2016)
Wang, L., Pan, J., Zhang, Y., et al.: A Li–air battery with ultralong cycle life in ambient air. Adv. Mater. 30(3), 1704378–1704376 (2017)
Zhang, Y., Wang, L., Guo, Z., et al.: High-performance lithium-air battery with a coaxial-fiber architecture. Angew. Chem. Int. Ed. 55(14), 4487–4491 (2016)
Ye, L., Hong, Y., Liao, M., et al.: Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Mater. 28, 364–374 (2020)
Ma, L., Chen, S., Wang, D., et al.: Super-stretchable zinc–air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 9(12), 1803046 (2019)
Guo, Z., Zhao, Y., Ding, Y., et al.: Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem. 3(2), 348–362 (2017)
Wang, M., Xie, S., Tang, C., et al.: Making fiber-shaped Ni//bi battery simultaneously with high energy density, power density, and safety. Adv. Funct. Mater. 30(3), 1905971 (2019)
Pan, J., Li, H., Sun, H., et al.: A lithium-air battery stably working at high temperature with high rate performance. Small. 14(6), 1703454 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Zhang, Y., Ye, T., Li, L., Peng, H. (2022). Carbon Nanotubes for Flexible Fiber Batteries. In: Borghi, F., Soavi, F., Milani, P. (eds) Nanoporous Carbons for Soft and Flexible Energy Devices. Carbon Materials: Chemistry and Physics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-81827-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-81827-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81826-5
Online ISBN: 978-3-030-81827-2
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)