Skip to main content

Carbon Nanotubes for Flexible Fiber Batteries

Part of the Carbon Materials: Chemistry and Physics book series (CMCP,volume 11)

Abstract

The development of various wearable flexible electronic devices has become an important trend of modern electronics. Fiber batteries are seen as one of the most promising power supplies for powering these wearable electronics due to their flexible, lightweight, breathable, and weavable features. The key to achieving flexible fiber batteries lies in constructing flexible electrodes. Among many promising materials, carbon nanotubes, which have the merits of lightweight, flexible, conductive as well as large specific surface area, are widely used to produce fiber electrodes for flexible fiber batteries. In this chapter, the preparation and the properties of carbon nanotube fibers are firstly described. Subsequently, the application of carbon nanotube fiber for flexible fiber lithium-ion batteries, lithium-metal batteries, aqueous-metal batteries, and other batteries are summarized from the aspects of working principle, fabrication process, and electrochemical properties. Finally, the issues of flexible fiber battery need to be conquered also have been discussed for future development.

Keywords

  • Carbon nanotubes
  • Flexible
  • Fiber electrodes
  • Fiber batteries
  • Lithium-ion batteries
  • Lithium-metal batteries
  • Aqueous-metal batteries

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature. 354(6348), 56–58 (1991)

    CrossRef  CAS  Google Scholar 

  2. Dai, H.: Carbon nanotubes: opportunities and challenges. Surf. Sci. 500(1–3), 218–241 (2002)

    CrossRef  CAS  Google Scholar 

  3. Ebbesen, T.W., Lezec, H.J., Hiura, H., et al.: Electrical conductivity of individual carbon nanotubes. Nature. 382(6586), 54–56 (1996)

    CrossRef  CAS  Google Scholar 

  4. Yu, M.F., Files, B.S., Arepalli, S., et al.: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84(24), 5552–5555 (2000)

    CrossRef  CAS  Google Scholar 

  5. Kim, P., Shi, L., Majumdar, A., et al.: Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87(21), 1–4 (2001)

    CrossRef  Google Scholar 

  6. Liao, M., Sun, H., Tao, X., et al.: Alignment of thermally conducting nanotubes making high-performance light-driving motors. ACS Appl. Mater. Interfaces. 10(31), 26765–26771 (2018)

    CrossRef  CAS  Google Scholar 

  7. Jiang, K., Li, Q., Fan, S.: Nanotechnology: spinning continuous carbon nanotube yarns. Nature. 419(6909), 801 (2002)

    CrossRef  CAS  Google Scholar 

  8. Li, Y.L., Kinloch, I.A., Windle, A.H.: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science. 304(5668), 276–278 (2004)

    CrossRef  CAS  Google Scholar 

  9. Vigolo, B., Penicaud, A., Coulon, C., et al.: Macroscopic fibers and ribbons of oriented carbon nanotubes. Science. 290(5495), 1331–1334 (2000)

    CrossRef  CAS  Google Scholar 

  10. Yoon, Y.H., Song, J.W., Kim, D., et al.: Transparent film heater using single-walled carbon nanotubes. Adv. Mater. 19(23), 4284–4287 (2007)

    CrossRef  CAS  Google Scholar 

  11. Amama, P.B., Pint, C.L., Kim, S.M., et al.: Influence of alumina type on the evolution and activity of alumina-supported fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano. 4(2), 895–904 (2010)

    CrossRef  CAS  Google Scholar 

  12. Jia, J.J., Zhao, J.N., Xu, G., et al.: A comparison of the mechanical properties of fibers spun from different carbon nanotubes. Carbon. 49(4), 1333–1339 (2011)

    CrossRef  CAS  Google Scholar 

  13. Zhang, Y.Y., Zou, G.F., Doorn, S.K., et al.: Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. ACS Nano. 3(8), 2157–2162 (2009)

    CrossRef  CAS  Google Scholar 

  14. Li, Q.W., Zhang, X.F., DePaula, R.F., et al.: Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Adv. Mater. 18(23), 3160–3163 (2006)

    CrossRef  CAS  Google Scholar 

  15. Hata, K., Futaba, D.N., Mizuno, K., et al.: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science. 306(5700), 1362–1364 (2004)

    CrossRef  CAS  Google Scholar 

  16. Zhang, S., Zhu, L., Minus, M.L., et al.: Solid-state spun fibers and yarns from 1-mm long carbon nanotube forests synthesized by water-assisted chemical vapor deposition. J. Mater. Sci. 43(13), 4356–4362 (2008)

    CrossRef  CAS  Google Scholar 

  17. Huynh, C.P., Hawkins, S.C.: Understanding the synthesis of directly spinnable carbon nanotube forests. Carbon. 48(4), 1105–1115 (2010)

    CrossRef  CAS  Google Scholar 

  18. Kuznetsov, A.A., Fonseca, A.F., Baughman, R.H., et al.: Structural model for dry-drawing of sheets and yarns from carbon nanotube forests. ACS Nano. 5(2), 985–993 (2011)

    CrossRef  CAS  Google Scholar 

  19. Peng, H., Jai, M., Li, Q., et al.: Vertically aligned pearl-like carbon nanotube arrays for fiber spinning. J. Am. Chem. Soc. 130, 1130–1131 (2008)

    CrossRef  CAS  Google Scholar 

  20. Wang, L., Xie, S., Wang, Z., et al.: Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4(2), 159–171 (2020)

    CrossRef  CAS  Google Scholar 

  21. Xu, X., Xie, S., Zhang, Y., et al.: The rise of fiber electronics. Angew. Chem. Int. Ed. 58(39), 13643–13653 (2019)

    CrossRef  CAS  Google Scholar 

  22. Chen, P., Xu, Y., He, S., et al.: Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat. Nanotechnol. 10(12), 1077–1083 (2015)

    CrossRef  CAS  Google Scholar 

  23. Ren, J., Li, L., Chen, C., et al.: Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery. Adv. Mater. 25(8), 1155–1159 (2013)

    CrossRef  CAS  Google Scholar 

  24. Li, L., Wu, Z., Yuan, S., et al.: Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7(7), 2101–2122 (2014)

    CrossRef  CAS  Google Scholar 

  25. Ren, J., Zhang, Y., Bai, W., et al.: Elastic and wearable wire-shaped lithium-ion battery with high electrochemical performance. Angew. Chem. Int. Ed. 53(30), 7864–7869 (2014)

    CrossRef  CAS  Google Scholar 

  26. Zhang, Y., Zhao, Y., Cheng, X., et al.: Realizing both high energy and high power densities by twisting three carbon-nanotube-based hybrid fibers. Angew. Chem. Int. Ed. 54(38), 11177–11182 (2015)

    CrossRef  CAS  Google Scholar 

  27. Zhang, Y., Bai, W., Ren, J., et al.: Super-stretchy lithium-ion battery based on carbon nanotube fiber. J. Mater. Chem. A. 2(29), 11054–11059 (2014)

    CrossRef  CAS  Google Scholar 

  28. Xu, Y., Zhao, Y., Ren, J., et al.: An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance. Angew. Chem. Int. Ed. 55(28), 7979–7982 (2016)

    CrossRef  CAS  Google Scholar 

  29. Xu, Y., Zhang, Y., Guo, Z., et al.: Flexible, stretchable, and rechargeable fiber-shaped zinc-air battery based on cross-stacked carbon nanotube sheets. Angew. Chem. Int. Ed. 54(51), 15390–15394 (2015)

    CrossRef  CAS  Google Scholar 

  30. Miao, M., McDonnell, J., Vuckovic, L., et al.: Poisson’s ratio and porosity of carbon nanotube dry-spun yarns. Carbon. 48(10), 2802–2811 (2010)

    CrossRef  CAS  Google Scholar 

  31. Weng, W., Sun, Q., Zhang, Y., et al.: Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett. 14(6), 3432–3438 (2014)

    CrossRef  CAS  Google Scholar 

  32. Zhang, Y., Bai, W., Cheng, X., et al.: Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem. Int. Ed. 53(52), 14564–14568 (2014)

    CrossRef  CAS  Google Scholar 

  33. Zhang, Y., Wang, Y., Wang, L., et al.: A fiber-shaped aqueous lithium ion battery with high power density. J. Mater. Chem. A. 4(23), 9002–9008 (2016)

    CrossRef  CAS  Google Scholar 

  34. Fang, X., Peng, H.: A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. Small. 11(13), 1488–1511 (2015)

    CrossRef  CAS  Google Scholar 

  35. Fang, X., Weng, W., Ren, J., et al.: A cable-shaped lithium sulfur battery. Adv. Mater. 28(3), 491–496 (2016)

    CrossRef  CAS  Google Scholar 

  36. Wang, L., Pan, J., Zhang, Y., et al.: A Li–air battery with ultralong cycle life in ambient air. Adv. Mater. 30(3), 1704378–1704376 (2017)

    CrossRef  Google Scholar 

  37. Zhang, Y., Wang, L., Guo, Z., et al.: High-performance lithium-air battery with a coaxial-fiber architecture. Angew. Chem. Int. Ed. 55(14), 4487–4491 (2016)

    CrossRef  CAS  Google Scholar 

  38. Ye, L., Hong, Y., Liao, M., et al.: Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Mater. 28, 364–374 (2020)

    CrossRef  Google Scholar 

  39. Ma, L., Chen, S., Wang, D., et al.: Super-stretchable zinc–air batteries based on an alkaline-tolerant dual-network hydrogel electrolyte. Adv. Energy Mater. 9(12), 1803046 (2019)

    CrossRef  Google Scholar 

  40. Guo, Z., Zhao, Y., Ding, Y., et al.: Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem. 3(2), 348–362 (2017)

    CrossRef  CAS  Google Scholar 

  41. Wang, M., Xie, S., Tang, C., et al.: Making fiber-shaped Ni//bi battery simultaneously with high energy density, power density, and safety. Adv. Funct. Mater. 30(3), 1905971 (2019)

    CrossRef  Google Scholar 

  42. Pan, J., Li, H., Sun, H., et al.: A lithium-air battery stably working at high temperature with high rate performance. Small. 14(6), 1703454 (2018)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Ye, T., Li, L., Peng, H. (2022). Carbon Nanotubes for Flexible Fiber Batteries. In: Borghi, F., Soavi, F., Milani, P. (eds) Nanoporous Carbons for Soft and Flexible Energy Devices. Carbon Materials: Chemistry and Physics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-81827-2_1

Download citation