Skip to main content

A Self-adaptive Hybrid Model/data-Driven Approach to SHM Based on Model Order Reduction and Deep Learning

  • Chapter
  • First Online:
Structural Health Monitoring Based on Data Science Techniques

Part of the book series: Structural Integrity ((STIN,volume 21))

Abstract

Aging of structures and infrastructures urges new approaches to ensure higher safety levels without service interruptions. Structural health monitoring (SHM) aims to cope with this need by processing the data continuously acquired by pervasive sensor networks, handled as vibration recordings. Damage diagnosis of a structure consists of detecting, localizing, and quantifying any relevant state of damage. Deep learning (DL) can provide an effective framework for data processing, regression, and classification tasks used for the aforementioned damage diagnosis purposes. Within this framework, we propose an approach that exploits a deep convolutional neural network (NN) architecture. The training of the NN is carried out by exploiting a dataset, numerically built through a physics-based model of the structure to be monitored. Parametric model order reduction (MOR) techniques are then exploited to reduce the computational burden related to the dataset construction. Within the proposed approach, whenever a damage state is detected, the physical model of the structure is adaptively updated, and the dataset is enriched to retrain the NN, allowing for the previously detected damage state as the new baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bigoni C, Hesthaven JS (2020) Simulation-based anomaly detection and damage localization: an application to structural health monitoring. Comput Methods Appl Mech Eng 363:112896. https://doi.org/10.1016/j.cma.2020.112896

  2. Bigoni C, Zhang Z, Hesthaven JS (2020) Systematic sensor placement for structural anomaly detection in the absence of damaged states. Comput Methods Appl Mech Eng 371:113315. https://doi.org/10.1016/j.cma.2020.113315

  3. Bishop CM (1994) Mixture density networks. Aston University

    Google Scholar 

  4. Bull L, Worden K, Dervilis N (2020) Towards semi-supervised and probabilistic classification in structural health monitoring. Mech Syst Signal Process 140:106653. https://doi.org/10.1016/j.ymssp.2020.106653

  5. Capellari G, Chatzi E, Mariani S (2018) Structural health monitoring sensor network optimization through Bayesian experimental design. ASCE-ASME J Risk Uncertain Eng Syst, Part A: Civ Eng 4(2):04018016. https://doi.org/10.1061/AJRUA6.0000966

  6. Corigliano A, Mariani S (2004) Parameter identification in explicit structural dynamics: performance of the extended Kalman filter. Comput Methods Appl Mech Eng 193(36–38):3807–3835. https://doi.org/10.1016/j.cma.2004.02.003

  7. De S, Britton J, Reynolds M, Skinner R, Jansen K, Doostan A (2020) On transfer learning of neural networks using bi-fidelity data for uncertainty propagation. Int J Uncertain Quantif 10(6):543–573

    Google Scholar 

  8. Doebling SW, Farrar CR, Prime MB, Shevitz DW (1996) Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Tech Rep LA-13070-MS, Los Alamos National Lab., NM, USA. https://doi.org/10.2172/249299. https://www.osti.gov/biblio/249299

  9. Eftekhar Azam S, Chatzi E, Papadimitriou C (2015) A dual Kalman filter approach for state estimation via output-only acceleration measurements. Mech Syst Signal Process 60–61:866–886. https://doi.org/10.1016/j.ymssp.2015.02.001

  10. Eftekhar Azam S, Mariani S (2018) Online damage detection in structural systems via dynamic inverse analysis: a recursive Bayesian approach. Eng Struct 159:28–45. https://doi.org/10.1016/j.engstruct.2017.12.031

  11. Entezami A, Sarmadi H, Behkamal B, Mariani S (2020) Big data analytics and structural health monitoring: a statistical pattern recognition-based approach. Sensors 20(8):2328. https://doi.org/10.3390/s20082328

  12. Farrar C, Worden K (2013) Structural health monitoring: a machine learning perspective. Wiley, Hoboken. https://doi.org/10.1002/9781118443118

  13. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press. http://www.deeplearningbook.org

  14. Munir M, Siddiqui SA, Dengel A, Ahmed S (2019) DeepAnT: a deep learning approach for unsupervised anomaly detection in time series. IEEE Access 7:1991–2005. https://doi.org/10.1109/ACCESS.2018.2886457

  15. Pandey A, Biswas M (1994) Damage detection in structures using changes in flexibility. J Sound Vib 169(1):3–17. https://doi.org/10.1006/jsvi.1994.1002

  16. Quarteroni A, Manzoni A, Negri F (2015) Reduced basis methods for partial differential equations: an introduction. Unitext, vol 92. Springer, Berlin

    Google Scholar 

  17. Rafiei MH, Adeli H (2018) A novel unsupervised deep learning model for global and local health condition assessment of structures. Eng Struct 156:598–607. https://doi.org/10.1016/j.engstruct.2017.10.070

  18. Rosafalco L, Manzoni A, Mariani S, Corigliano A (2020) Fully convolutional networks for structural health monitoring through multivariate time series classification. Adv Model Simul Eng Scie 7:38. https://doi.org/10.1186/s40323-020-00174-1

  19. Rosafalco L, Manzoni A, Mariani S, Corigliano A (2021) An autoencoder-based deep learning approach for load identification in structural dynamics. Submitted

    Google Scholar 

  20. Rosafalco L, Torzoni M, Manzoni A, Mariani S, Corigliano A (2021) Online structural health monitoring by model order reduction and deep learning algorithms. Submitted

    Google Scholar 

  21. Rytter A (1993) Vibrational based inspection of civil engineering structures. Ph.D. thesis, University of Aalborg, Denmark

    Google Scholar 

  22. Sohn H, Worden K, Farrar CR (2002) Statistical damage classification under changing environmental and operational conditions. J Intell Mater Syst Struct 13(9):561–574. https://doi.org/10.1106/104538902030904

  23. Sudret B, Defaux G, Pendola M (2007) Stochastic evaluation of the damage length in rc beams submitted to corrosion of reinforcing steel. Civ Eng Environ Syst 24(2):165–178. https://doi.org/10.1080/10286600601159305

  24. Taddei T, Penn J, Yano M, Patera A (2018) Simulation-based classification; a model-order-reduction approach for structural health monitoring. Arch Comput Methods Eng 25(1):23–45

    Google Scholar 

  25. Torzoni M, Rosafalco L, Manzoni A (2020) A combined model-order reduction and deep learning approach for structural health monitoring under varying operational and environmental conditions. Eng Proc 2(1). https://doi.org/10.3390/ecsa-7-08258

  26. Zamir AR, Sax A, Shen W, Guibas LJ, Malik J, Savarese S (2018) Taskonomy: disentangling task transfer learning. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, 18 June–23 June, pp 3712–3722. Salt Lake City, UT. https://doi.org/10.1109/CVPR.2018.00391

  27. Zhang T, Biswal S, Wang Y (2020) Shmnet: condition assessment of bolted connection with beyond human-level performance. Struct Health Monit 19(4):1188–1201. https://doi.org/10.1177/1475921719881237

Download references

Acknowledgements

M. T. acknowledges the financial support by Politecnico di Milano through the interdisciplinary Ph.D. Grant “Physics-informed deep learning for structural health monitoring.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Mariani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosafalco, L., Torzoni, M., Manzoni, A., Mariani, S., Corigliano, A. (2022). A Self-adaptive Hybrid Model/data-Driven Approach to SHM Based on Model Order Reduction and Deep Learning. In: Cury, A., Ribeiro, D., Ubertini, F., Todd, M.D. (eds) Structural Health Monitoring Based on Data Science Techniques. Structural Integrity, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-030-81716-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81716-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81715-2

  • Online ISBN: 978-3-030-81716-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics