Skip to main content

Bohemian Matrices: Past, Present and Future

  • Conference paper
  • First Online:
Maple in Mathematics Education and Research (MC 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1414))

Included in the following conference series:

  • 755 Accesses

Abstract

A matrix family is called Bohemian if its entries come from a fixed finite discrete (and hence bounded) set, usually integers, called the “population” P. We look at Bohemian matrices, specifically those with entries from \(\{-1, 0, +1\}\). The name is a mnemonic for Bounded Height Matrix of Integers. Such families arise in many applications (e.g. compressed sensing) and the properties of matrices selected “at random” from such families are of practical and mathematical interest. An overview of some of our original interest in Bohemian matrices can be found in [6, 7]. In this paper we present a Bohemian Matrices tour, exposing their appearance in the past, their promising present and their hopeful future.

The author is partially supported by FEDER/Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación/MTM2017-88796-P (Symbolic Computation: new challenges in Algebra and Geometry together with its applications).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baez, J.: The beauty of roots (2011). https://johncarlosbaez.wordpress.com/2011/12/11/the-beauty-of-roots/

  2. Borwein, P., Jorgenson, L.: Visible structures in number theory. Am. Math. Mon. 108, 897–910 (2001)

    Article  MathSciNet  Google Scholar 

  3. Chan, E.Y.S.: A comparison of solution methods for Mandelbrot-like polynomials, Electronic thesis and Dissertation Repository, The University of Western Ontario (2016). https://ir.lib.uwo.ca/etd/4028

  4. Chan, E.Y.S., Corless, R.M.: A new kind of companion matrix. Electron. J. Linear Algebra 32, 335–342 (2017)

    Article  MathSciNet  Google Scholar 

  5. Chan, E.Y.S., Corless, R.M.: Minimal height companion matrices for Euclid polynomials. Math. Comput. Sci. (2018). https://doi.org/10.1007/s11786-018-0364-2

  6. Chan, E.Y.S., Corless, R.M., Gonzalez-Vega, L., Sendra, J.R., Sendra, J.: Algebraic linearizations of matrix polynomials. Linear Algebra Appl. 563, 373–399 (2019)

    Article  MathSciNet  Google Scholar 

  7. Chan, E.Y.S., Corless, R.M., Gonzalez-Vega, L., Sendra, J.R., Sendra, J., Thornton, S.E.: Upper Hessenberg and Toeplitz Bohemians. Linear Algebra Appl. 601, 372–100 (2020)

    Article  MathSciNet  Google Scholar 

  8. Corless, R.M.: Generalized companion matrices in the Lagrange basis. In: Proceedings EACA, Universidad de Cantabria, Santander, Spain, 2004, pp.317–322 (2004)

    Google Scholar 

  9. Corless, R.M., Lawrence, P.W.: Mandelbrot polynomials and matrices, in preparation

    Google Scholar 

  10. Corless, R.M., Lawrence, P.W.: The largest roots of the Mandelbrot polynomials. In: Bailey, D. et al. (eds.) Computational and Analytical Mathematics., pp. 305–324. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-7621-4_13

  11. Corless, R.M., Thornton, S.: Visualizing eigenvalues of random matrices. ACM Commun. Comput. Algebra 50, 35–39 (2016). https://doi.org/10.1145/2930964.2930969

  12. Corless, R.M., Thornton, S.E.: The Bohemian eigenvalue project. ACM Commun. Comput. Algebra 50, 158–160 (2016)

    Article  Google Scholar 

  13. Guyker, J.: Magic squares with magic inverses. Int. J. Math. Educ. Sci. Technol., 683–688 (2007)

    Google Scholar 

  14. Fasi, M., Negri, G.M.: Determinants of normalized bohemian upper Hessenberg matrices. Electron. J. Linear Algebra 36, 352–366 (2020). ISSN 1081–3810

    Google Scholar 

  15. Harris, E., Stange, K.E., Trettel, S.: Algebraic number starscapes (2020). https://arxiv.org/pdf/2008.07655.pdf

  16. Gear, C.: A simple set of test matrices for eigenvalue programs. Math. Comput. 23, 119–125 (1969)

    Article  MathSciNet  Google Scholar 

  17. Lettington, M.C.: Fleck’s congruence, associated magic squares and a zeta identity. Funct. Approx. Comment. Math. 45, 165–205 (2011)

    Article  MathSciNet  Google Scholar 

  18. Littlewood, J.E.: On polynomials \(\sum ^{n} \pm z^{m}, \sum ^{n} e^{\alpha _{m}i} z^m, z = e^{\theta i}\). J. London Math. Soc. 41, 367–376 (1966)

    Article  MathSciNet  Google Scholar 

  19. Odlyzko, A.M., Ponnen, B.: Zeros of polynomials with 0,1 coefficients. In: Salvy, B. (ed.) Algorithms Seminar, vol. 2130, pp. 169–172, December 1993

    Google Scholar 

  20. Reyna, R., Damelin, S.: On the structure of the Littlewood polynomials and their zero sets. arXiv preprint arXiv:1504.08058 (2015)

  21. Ryser, H.J.: Matrices of zeros and ones. Bull. Amer. Math. Soc. 66(6), 442–464 (1960)

    Article  MathSciNet  Google Scholar 

  22. Tao, T., Vu, V.: Random matrices have simple spectrum. Combinatorica 37, 539–553 (2017)

    Article  MathSciNet  Google Scholar 

  23. Taussky, O.: Matrices of rational integers. Bull. Am. Math. Soc. 66, 327–345 (1960)

    Article  MathSciNet  Google Scholar 

  24. Taussky, O.: Some computational problems involving integral matrices. J. Res. Natl. Bur. Stand. B Math. Sci. 65, 15–17 (1961)

    Google Scholar 

  25. Thornton, S.E.: The characteristic polynomial database, 7 September 2018. http://bohemianmatrices.com/cpdb

  26. Thornton, S.E.: Algorithms for Bohemian Matrices, Electronic Thesis and Dissertation Repository, The University of Western Ontario (2019). https://ir.lib.uwo.ca/etd/6069/

  27. Trefethen, L.N.: Pseudospectra of matrices. Numer. Anal. 91, 234–266 (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juana Sendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sendra, J. (2021). Bohemian Matrices: Past, Present and Future. In: Corless, R.M., Gerhard, J., Kotsireas, I.S. (eds) Maple in Mathematics Education and Research. MC 2020. Communications in Computer and Information Science, vol 1414. Springer, Cham. https://doi.org/10.1007/978-3-030-81698-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81698-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81697-1

  • Online ISBN: 978-3-030-81698-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics