Skip to main content

Nonsmooth Nash Equilibria on Smooth Manifolds

  • Chapter
  • First Online:
Variational and Monotonicity Methods in Nonsmooth Analysis

Part of the book series: Frontiers in Mathematics ((FM))

  • 514 Accesses

Abstract

Motivated by Nash equilibrium problems on ‘curved’ strategy sets, the concept of Nash-Stampacchia equilibrium points is introduced by using nonsmooth analysis on Riemannian manifolds. Fixed point characterizations and existence of Nash-Stampacchia equilibria are studied when the strategy sets are compact/noncompact geodesic convex subsets of Hadamard manifolds, exploiting two well-known geometrical features of these spaces both involving the metric projection map. These properties actually characterize the non-positivity of the sectional curvature of complete and simply connected Riemannian spaces, delimiting the Hadamard manifolds as the optimal geometrical framework of Nash-Stampacchia equilibrium problems. Our analytical approach exploits various elements from set-valued and variational analysis, dynamical systems, and nonsmooth calculus on Riemannian manifolds. Several examples are presented on the Poincaré upper-plane model and on the open convex cone of symmetric positive definite matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Azagra, J. Ferrera, F. López-Mesas, Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds. J. Funct. Anal. 220, 304–361 (2005)

    Article  MathSciNet  Google Scholar 

  2. C.A. Bessaga, A. Peł czyński, Selected Topics in Infinite-Dimensional Topology (PWN—Polish Scientific Publishers, Warsaw, 1975). Monografie Matematyczne, Tom 58. [Mathematical Monographs, Vol. 58]

    Google Scholar 

  3. C.-H. Chen, Warped products of metric spaces of curvature bounded from above. Trans. Am. Math. Soc. 351, 4727–4740 (1999)

    Article  MathSciNet  Google Scholar 

  4. M. P. do Carmo, in Riemannian Geometry. Mathematics: Theory & Applications (Birkhäuser, Boston, 1992). Translated from the second Portuguese edition by Francis Flaherty.

    Google Scholar 

  5. S. Grognet, Théorème de Motzkin en courbure négative. Geom. Dedicata 79, 219–227 (2000)

    Article  MathSciNet  Google Scholar 

  6. A. Kristály, Location of Nash equilibria: a Riemannian approach. Proc. Am. Math. Soc. 138, 1803–1810 (2010)

    Article  MathSciNet  Google Scholar 

  7. A. Kristály, Nash-type equilibria on Riemannian manifolds: a variational approach. J. Math. Pures Appl. (9) 101, 660–688 (2014)

    Google Scholar 

  8. A. Kristály, V. Rădulescu, C. Varga, in Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, vol. 136 of Encyclopedia of Mathematics and its Applications (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  9. S. Lang, in Fundamentals of Differential Geometry, vol. 191 of Graduate Texts in Mathematics (Springer, New York, 1999)

    Google Scholar 

  10. C. Li, G. López, V. Martín-Márquez, Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. (2) 79, 663–683 (2009)

    Google Scholar 

  11. C. Li, G. López, V. Martín-Márquez, Iterative algorithms for nonexpansive mappings on Hadamard manifolds. Taiwan. J. Math. 14, 541–559 (2010)

    MathSciNet  MATH  Google Scholar 

  12. J. F. McClendon, Minimax and variational inequalities for compact spaces. Proc. Am. Math. Soc. 89, 717–721 (1983)

    Article  MathSciNet  Google Scholar 

  13. D. Moskovitz, L.L. Dines, Convexity in a linear space with an inner product. Duke Math. J. 5, 520–534 (1939)

    Article  MathSciNet  Google Scholar 

  14. J. Nash, Equilibrium points in n-person games. Proc. Natl. Acad. Sci. U.S.A. 36, 48–49 (1950)

    Article  MathSciNet  Google Scholar 

  15. J. Nash, Non-cooperative games. Ann. Math. 54, 286–295 (1951)

    Article  MathSciNet  Google Scholar 

  16. S. Z. Németh, Variational inequalities on Hadamard manifolds. Nonlinear Anal. 52, 1491–1498 (2003)

    Article  MathSciNet  Google Scholar 

  17. B. O’Neill, in Semi-Riemannian Geometry, vol. 103 of Pure and Applied Mathematics (Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983). With applications to relativity.

    Google Scholar 

  18. C. Udrişte, in Convex Functions and Optimization Methods on Riemannian Manifolds, vol. 297 of Mathematics and its Applications (Kluwer Academic Publishers Group, Dordrecht, 1994)

    Google Scholar 

  19. R. Walter, On the metric projection onto convex sets in Riemannian spaces. Arch. Math. (Basel) 25, 91–98 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Costea, N., Kristály, A., Varga, C. (2021). Nonsmooth Nash Equilibria on Smooth Manifolds. In: Variational and Monotonicity Methods in Nonsmooth Analysis. Frontiers in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-81671-1_9

Download citation

Publish with us

Policies and ethics