Skip to main content

On Index Calculus Algorithms for Subfield Curves

Part of the Lecture Notes in Computer Science book series (LNSC,volume 12804)

Abstract

In this paper we further the study of index calculus methods for solving the elliptic curve discrete logarithm problem (ECDLP). We focus on the index calculus for subfield curves, also called Koblitz curves, defined over \(\mathbb {F}_q\) with ECDLP in \(\mathbb {F}_{q^n}\). Instead of accelerating the solution of polynomial systems during index calculus as was predominantly done in previous work, we define factor bases that are invariant under the q-power Frobenius automorphism of the field \(\mathbb {F}_{q^n}\), reducing the number of polynomial systems that need to be solved. A reduction by a factor of 1/n is the best one could hope for. We show how to choose factor bases to achieve this, while simultaneously accelerating the linear algebra step of the index calculus method for Koblitz curves by a factor \(n^2\). Furthermore, we show how to use the Frobenius endomorphism to improve symmetry breaking for Koblitz curves. We provide constructions of factor bases with the desired properties, and we study their impact on the polynomial system solving costs experimentally.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benjamin, A.T., Bennett, C.D.: The probability of relatively prime polynomials. Math. Mag. 80(3), 196–202 (2007)

    Google Scholar 

  2. Couveignes, J.-M., Lercier, R.: Galois invariant smoothness basis. In: Algebraic Geometry and Its Applications: Dedicated to Gilles Lachaud on His 60th Birthday, pp. 142–167. World Scientific (2008)

    Google Scholar 

  3. Diem, C.: On the discrete logarithm problem in elliptic curves. Compos. Math. 147(1), 75–104 (2011)

    CrossRef  MathSciNet  Google Scholar 

  4. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)

    CrossRef  MathSciNet  Google Scholar 

  5. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F5). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pp. 75–83 (2002)

    Google Scholar 

  6. Faugère, J.-C., Gaudry, P., Huot, L., Renault, G.: Using symmetries in the index calculus for elliptic curves discrete logarithm. J. Cryptol. 27(4), 595–635 (2014)

    CrossRef  MathSciNet  Google Scholar 

  7. Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)

    CrossRef  Google Scholar 

  8. Faugère, J.-C., Perret, L., Petit, C., Renault, G.: Improving the complexity of index calculus algorithms in elliptic curves over binary fields. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 27–44. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_4

    CrossRef  MATH  Google Scholar 

  9. Galbraith, S.D., Gaudry, P.: Recent progress on the elliptic curve discrete logarithm problem. Des. Codes Crypt. 78(1), 51–72 (2015). https://doi.org/10.1007/s10623-015-0146-7

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Gaudry, P.: An algorithm for solving the discrete log problem on hyperelliptic curves. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 19–34. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_2

    CrossRef  Google Scholar 

  11. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem. J. Symb. Comput. 44(12), 1690–1702 (2009)

    CrossRef  MathSciNet  Google Scholar 

  12. Gorla, E., Massierer, M.: Index calculus in the trace zero variety. Adv. Math. Commun. 9(4), 515–539 (2015)

    CrossRef  MathSciNet  Google Scholar 

  13. Huang, M.-D.A., Kosters, M., Yeo, S.L.: Last fall degree, HFE, and Weil descent attacks on ECDLP. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. Part I, LNCS, vol. 9215, pp. 581–600. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_28

  14. Huang, Y.-J., Petit, C., Shinohara, N., Takagi, T.: Improvement of Faugère et al.’s method to solve ECDLP. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp. 115–132. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41383-4_8

    CrossRef  Google Scholar 

  15. Joux, A., Lercier, R.: The function field sieve in the medium prime case. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_16

    CrossRef  MATH  Google Scholar 

  16. Joux, A., Vitse, V.: Elliptic curve discrete logarithm problem over small degree extension fields. J. Cryptol. 26(1), 119–143 (2013)

    CrossRef  MathSciNet  Google Scholar 

  17. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)

    CrossRef  MathSciNet  Google Scholar 

  18. Menezes, A., Qu, M.: Analysis of the Weil descent attack of Gaudry, Hess and smart. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 308–318. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-45353-9_23

    CrossRef  Google Scholar 

  19. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_31

    CrossRef  Google Scholar 

  20. Nagao, K.: Decomposition formula of the Jacobian group of plane curve (2013)

    Google Scholar 

  21. Petit, C., Quisquater, J.-J.: On polynomial systems arising from a Weil descent. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 451–466. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_28

    CrossRef  Google Scholar 

  22. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance (corresp.). IEEE Trans. Inf. Theory 24(1), 106–110 (1978)

    CrossRef  Google Scholar 

  23. Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptol. 13(4), 437–447 (2000)

    CrossRef  MathSciNet  Google Scholar 

  24. Rescorla, E., Dierks, T.: The transport layer security (TLS) protocol version 1.3 (2018)

    Google Scholar 

  25. Semaev, I.: Summation polynomials and the discrete logarithm problem on elliptic curves. IACR Cryptology ePrint Archive 2004:31 (2004)

    Google Scholar 

  26. Semaev, I.: New algorithm for the discrete logarithm problem on elliptic curves. Cryptology ePrint Archive, Report 2015/310 (2015). https://eprint.iacr.org/2015/310

  27. Smart, N.P.: Elliptic curve cryptosystems over small fields of odd characteristic. J. Cryptol. 12(2), 141–151 (1999)

    CrossRef  MathSciNet  Google Scholar 

  28. Van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications. J. Cryptol. 12(1), 1–28 (1999)

    CrossRef  MathSciNet  Google Scholar 

  29. Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory 32(1), 54–62 (1986)

    CrossRef  MathSciNet  Google Scholar 

  30. Wiener, M.J., Zuccherato, R.J.: Faster attacks on elliptic curve cryptosystems. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 190–200. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48892-8_15

    CrossRef  Google Scholar 

Download references

Acknowledgements

We thank Jean-Marc Couveignes and Reynald Lercier for their work on Galois invariant smoothness bases [2] and helpful conversations about the topic. Furthermore, we would like to thank the anonymous reviewers for their helpful comments on the submitted manuscript of this paper. Christophe Petit’s work was supported by EPSRC grant EP/S01361X/1. Simon-Philipp Merz was supported by the EPSRC grant EP/P009301/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon-Philipp Merz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galbraith, S.D., Granger, R., Merz, SP., Petit, C. (2021). On Index Calculus Algorithms for Subfield Curves. In: Dunkelman, O., Jacobson, Jr., M.J., O'Flynn, C. (eds) Selected Areas in Cryptography. SAC 2020. Lecture Notes in Computer Science(), vol 12804. Springer, Cham. https://doi.org/10.1007/978-3-030-81652-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81652-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81651-3

  • Online ISBN: 978-3-030-81652-0

  • eBook Packages: Computer ScienceComputer Science (R0)