Skip to main content

Parameter Adaptation In Situ: Design Impacts and Trade-Offs

  • Conference paper
  • First Online:
In Situ Visualization for Computational Science

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 476 Accesses

Abstract

This chapter presents a study of parameter adaptation in situ, exploring the resulting trade-offs in rendering quality and workload distribution. Four different use cases are analyzed with respect to configuration changes. First, the performance impact of load balancing and resource allocation variants on both simulation and visualization is investigated using the MegaMol framework. Its loose coupling scheme and architecture enable minimally invasive in situ operation without impacting the stability of the simulation with (potentially) experimental visualization code. Second, Volumetric Depth Images (VDIs) are considered: a compact, view-dependent intermediate representation that can efficiently be generated and used for post hoc exploration. A study of their inherent trade-offs regarding size, quality, and generation time provides the basis for parameter optimization. Third, streaming for remote visualization allows a user to monitor the progress of a simulation and to steer visualization parameters. Compression settings are adapted dynamically based on predictions via convolutional neural networks across different parts of images to achieve high frame rates for high-resolution displays like powerwalls. Fourth, different performance prediction models for volume rendering address offline scenarios (like hardware acquisition planning) as well as dynamic adaptation of parameters and load balancing. Finally, the chapter concludes by summarizing overarching approaches and challenges, discussing the potential role that adaptive approaches can play in increasing the efficiency of in situ visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blom, D.S., Ertl, T., Fernandes, O., Frey, S., Klimach, H., Krupp, V., Mehl, M., Roller, S., Sternel, D.C., Uekermann, B., Winter, T., Van Zuijlen, A.H.: Partitioned fluid-structure-acoustics interaction on distributed data. In: Springer, editor, Software for Exascale Computing—SPPEXA 2013–2015, vol. 113, pp. 267–291 (2016)

    Google Scholar 

  2. Bosse, S., Maniry, D., Wiegand, Samek, W.: A deep neural network for image quality assessment. In: IEEE International Conference on Image Processing, pp. 3773–3777 (2016)

    Google Scholar 

  3. Bruder, V., Frey, S., Ertl, T.: Real-time performance prediction and tuning for interactive volume raycasting. In: SIGGRAPH ASIA 2016 Symposium on Visualization, New York, NY, USA, pp. 7:1–7:8. ACM (2016)

    Google Scholar 

  4. Bruder, V., Frey, S., Ertl, T.: Prediction-based load balancing and resolution tuning for interactive volume raycasting. Vis. Inf. (2017)

    Google Scholar 

  5. Bruder, V., Müller, C., Frey, S., Ertl, T.: On evaluating runtime performance of interactive visualizations. IEEE Trans. Vis. Comput. Graph. 1–1 (2019)

    Google Scholar 

  6. Engel, Y., Mannor, S., Meir, R.: The kernel recursive least-squares algorithm. IEEE Trans. Signal Process. 52(8), 2275–2285 (2004)

    Article  MathSciNet  Google Scholar 

  7. Fernandes, O., Blom, D.S., Frey, S., Van Zuijlen, S.H., Bijl, H., Ertl, T.: On in-situ visualization for strongly coupled partitioned fluid-structure interaction. In: VI International Conference on Computational Methods for Coupled Problems in Science and Engineering (2015)

    Google Scholar 

  8. Fernandes, O., Frey, S., Sadlo, F., Ertl, T.: Space-time volumetric depth images for in-situ visualization. In: IEEE Symposium on Large Data Analysis and Visualization, pp. 59–65 (2014)

    Google Scholar 

  9. Frey, S., Ertl, T.: Auto-tuning intermediate representations for in situ visualization. In: 2016 New York Scientific Data Summit (NYSDS), pp. 1–10 (2016)

    Google Scholar 

  10. Frey, S., Sadlo, F., Ertl, T.: Explorable volumetric depth images from raycasting. In: Conference on Graphics, Patterns and Images, pp. 123–130 (2013)

    Google Scholar 

  11. Frieß, F., Landwehr, M., Bruder, V., Frey, S., Ertl, T.: Adaptive encoder settings for interactive remote visualisation on high-resolution displays. In: Symposium on Large Data Analysis and Visualization (LDAV) (2018)

    Google Scholar 

  12. Gralka, P., Becher, M., Braun, M., Frieß, F., Müller, C., Rau, T., Schatz, K., Schulz, C., Krone, M., Reina, G., Ertl, T.: MegaMol—A comprehensive prototyping framework for visualizations. Eur. Phys. J. Spec. Top. 227(14), 1817–1829 (2019)

    Article  Google Scholar 

  13. Grottel, S., Krone, M., Müller, C., Reina, G., Ertl, T.: Megamol—a prototyping framework for particle-based visualization. IEEE Trans. Vis. Comput. Graph. 21(2), 201–214 (2015)

    Article  Google Scholar 

  14. Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1733–1740 (2014)

    Google Scholar 

  15. Larsen, M., Ahrens, J., Ayachit, U., Brugger, E., Childs, H., Geveci, B., Harrison, C.: The alpine in situ infrastructure: Ascending from the ashes of strawman. In: Proceedings of the In Situ Infrastructures on Enabling Extreme-Scale Analysis and Visualization, ISAV’17, pp. 42–46, New York, NY, USA. ACM (2017)

    Google Scholar 

  16. Li, C., Bovik, A.C., Wu, X.: Blind image quality assessment using a general regression neural network. IEEE Trans. Neural Netw. 22(5), 793–799 (2011)

    Article  Google Scholar 

  17. Moreland, K., Kendall, W., Peterka, T., Huang, J.: An image compositing solution at scale. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, New York, NY, USA. ACM (2011)

    Google Scholar 

  18. Niethammer, C., Becker, S., Bernreuther, M., Buchholz, M., Eckhardt, W., Heinecke, A., Werth, S., Bungartz, H.-J., Glass, C.W., Hasse, H., Vrabec, J., Horsch, M.: ls1 mardyn: the massively parallel molecular dynamics code for large systems. J. Chem. Theory Comput. 10(10), 4455–4464 (2014). PMID: 26588142

    Article  Google Scholar 

  19. O’Leary, P., Ahrens, J., Jourdain, S., Wittenburg, S., Rogers, D.H., Petersen, M.: Cinema image-based in situ analysis and visualization of MPAS-ocean simulations. Parallel Comput. 55, 43–48 (2016)

    Article  Google Scholar 

  20. Rau, T., Gralka, P., Fernandes, O., Reina, G., Frey, S., Ertl, T.: The impact of work distribution on in situ visualization: a case study. In: Proceedings of the Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization, ISAV âǍŹ19, New York, NY, USA, pp. 17–22. ACM (2019)

    Google Scholar 

  21. Rau, T., Krone, M., Reina, G., Ertl, T.: Challenges and opportunities using software-defined visualization in megamol. In: Workshop on Visual Analytics, Information Visualization and Scientific Visualization (WVIS) in the 30th Conference on Graphics, Patterns and Images (SIBGRAPI’17) (2017)

    Google Scholar 

  22. Tkachev, G., Frey, S., Müller, C., Bruder, V., Ertl, T.: Prediction of distributed volume visualization performance to support render hardware acquisition. In: Eurographics Symposium on Parallel Graphics and Visualization. The Eurographics Association (2017)

    Google Scholar 

  23. Wald, I., Johnson, G., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Günther, J., Navratil, P.: OSPRay—A CPU ray tracing framework for scientific visualization. IEEE Trans. Vis. Comput. Graph. 23(1), 931–940 (2017)

    Article  Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2075 (SimTech)—390740016 and as part of Project A02 of SFB/Transregio 161 (project number 251654672). It was also partially funded by the German Bundesministerium für Bildung und Forschung (BMBF) as part of project “TaLPas” (Task-based Load Balancing and Auto-tuning in Particle Simulations). We would like to thank Intel® Corporation for additional support via the Intel® Graphics and Visualization Institutes of XeLLENCE program (CG #35512501). The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported within this chapter. Additionally, the authors would like to thank the ls1 Mardyn development team for their support and Matthias Heinen for providing the simulation configurations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Frey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frey, S. et al. (2022). Parameter Adaptation In Situ: Design Impacts and Trade-Offs. In: Childs, H., Bennett, J.C., Garth, C. (eds) In Situ Visualization for Computational Science. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-81627-8_8

Download citation

Publish with us

Policies and ethics