Skip to main content

In Situ Wavelet Compression on Supercomputers for Post Hoc Exploration

  • Conference paper
  • First Online:
Book cover In Situ Visualization for Computational Science

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Wavelet compression is a popular approach for reducing data size while maintaining high data integrity. This chapter considers how wavelet compression can be used for data visualization and post hoc exploration on supercomputers. There are three major parts in this chapter. The first part describes the basics of wavelet transforms, which are essential signal transformations in a wavelet compression pipeline, and how their properties can be used for data compression. The second part analyzes the efficacy of wavelet compression on scientific data, with a focus on analyses involving scientific visualizations. The third part evaluates how well wavelet compression fits in an in situ workflow on supercomputers. After reading this chapter, readers should have a high-level understanding of how wavelet compression works, as well as its efficacy for in situ compression and post hoc exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbate, A., Koay, J., Frankel, J., Schroeder, S.C., Das, P.: Signal detection and noise suppression using a wavelet transform signal processor: application to ultrasonic flaw detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(1), 14–26 (1997)

    Article  Google Scholar 

  2. Blelloch, G.E.: Vector models for data-parallel computing, vol. 75. MIT press Cambridge (1990)

    Google Scholar 

  3. Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)

    Article  MathSciNet  Google Scholar 

  4. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45(5), 485–560 (1992)

    Article  MathSciNet  Google Scholar 

  5. Computational and Information Systems Laboratory, National Center for Atmospheric Research: Cheyenne: A SGI ICE XA. System (2017). https://doi.org/10.5065/D6RX99HX

  6. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41(7), 909–996 (1988)

    Article  MathSciNet  Google Scholar 

  7. Dürst, M.J.: A new method for image compression and progressive transmission. Ph.D. thesis, University of Tokyo (1990)

    Google Scholar 

  8. Fowler, J.E.: QccPack: an open-source software library for quantization, compression, and coding. In: Proceedings of SPIE, Applications of Digital Image Processing XXIII, vol. 4115, pp. 294–301. SPIE (2000)

    Google Scholar 

  9. Gaither, K.P., Childs, H., Schulz, K.W., Harrison, C., Barth, W., Donzis, D., Yeung, P.K.: Visual analytics for finding critical structures in massive time-varying turbulent-flow simulations. IEEE Comput. Graph. Appl. 32(4), 34–45 (2012)

    Article  Google Scholar 

  10. Grossmann, A.: Wavelet transforms and edge detection. In: Stochastic processes in physics and engineering, pp. 149–157. Springer (1988)

    Google Scholar 

  11. Guthe, S., Wand, M., Gonser, J., Straßer, W.: Interactive rendering of large volume data sets. In: Proceedings of IEEE Visualization (VIS’02), pp. 53–60. IEEE (2002)

    Google Scholar 

  12. Harrison, C., Childs, H., Gaither, K.P.: Data-parallel mesh connected components labeling and analysis. In: Proceedings of EuroGraphics Symposium on Parallel Graphics and Visualization (EGPGV), pp. 131–140. Llandudno, Wales (2011)

    Google Scholar 

  13. Ihm, I., Park, S.: Wavelet-based 3D compression scheme for interactive visualization of very large volume data. In: Computer Graphics Forum, vol. 18, pp. 3–15. Wiley Online Library (1999)

    Google Scholar 

  14. Jawerth, B., Sweldens, W.: An overview of wavelet based multiresolution analyses. SIAM Rev. 36(3), 377–412 (1994)

    Article  MathSciNet  Google Scholar 

  15. Karlin, I., Keasler, J., Neely, R.: Lulesh 2.0 updates and changes. Technical Report LLNL-TR-641973 (2013)

    Google Scholar 

  16. Kim, B.J., Pearlman, W.A.: An embedded wavelet video coder using three-dimensional set partitioning in hierarchical trees (SPIHT). In: Proceedings of Data Compression Conference (DCC’97), pp. 251–260. IEEE (1997)

    Google Scholar 

  17. Kim, T.Y., Shin, Y.G.: An efficient wavelet-based compression method for volume rendering. In: Proceedings of the Seventh Pacific Conference on Computer Graphics and Applications, pp. 147–156. IEEE (1999)

    Google Scholar 

  18. Larsen, M., Aherns, J., Ayachit, U., Brugger, E., Childs, H., Geveci, B., Harrison, C.: The alpine in situ infrastructure: ascending from the ashes of strawman. In: Proceedings of the In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization Workshop, ISAV2017. ACM, New York, NY, USA (2017)

    Google Scholar 

  19. Li, S., Gruchalla, K., Potter, K., Clyne, J., Childs, H.: Evaluating the efficacy of wavelet configurations on turbulent-flow data. In: IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 81–89 (2015)

    Google Scholar 

  20. Li, S., Jaroszynski, S., Pearse, S., Orf, L., Clyne, J.: Vapor: A visualization package tailored to analyze simulation data in earth system science. Atmosphere 10(9) (2019). https://doi.org/10.3390/atmos10090488. https://www.mdpi.com/2073-4433/10/9/488

  21. Li, S., Larsen, M., Clyne, J., Childs, H.: Performance impacts of in situ wavelet compression on scientific simulations. In: Proceedings of the In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization Workshop, ISAV2017. ACM, New York, NY, USA (2017)

    Google Scholar 

  22. Li, S., Marsaglia, N., Chen, V., Sewell, C., Clyne, J., Childs, H.: Achieving portable performance for wavelet compression using data parallel primitives. In: Proceedings of EuroGraphics Symposium on Parallel Graphics and Visualization (EGPGV). Barcelona, Spain (2017)

    Google Scholar 

  23. Li, S., Marsaglia, N., Garth, C., Woodring, J., Clyne, J., Childs, H.: Data reduction techniques for simulation, visualization and data analysis. Comput. Graph. Forum 37(6), 422–447 (2018)

    Google Scholar 

  24. Li, S., Sane, S., Orf, L., Mininni, P., Clyne, J., Childs, H.: Spatiotemporal wavelet compression for visualization of scientific simulation data. In: 2017 IEEE International Conference on Cluster Computing (CLUSTER), pp. 216–227 (2017)

    Google Scholar 

  25. Lu, Y.M., Do, M.N.: Multidimensional directional filter banks and surfacelets. IEEE Trans. Image Process. 16(4), 918–931 (2007)

    Article  MathSciNet  Google Scholar 

  26. Moreland, K., Sewell, C., Usher, W., Lo, L., Meredith, J., Pugmire, D., Kress, J., Schroots, H., Ma, K.L., Childs, H., Larsen, M., Chen, C.M., Maynard, R., Geveci, B.: VTK-m: accelerating the visualization toolkit for massively threaded architectures. IEEE Comput. Graph. Appl. (CG&A) 36(3), 48–58 (2016)

    Article  Google Scholar 

  27. Orf, L., Wilhelmson, R., Lee, B., Finley, C., Houston, A.: Evolution of a long-track violent tornado within a simulated supercell. Bull. Am. Meteorol. Soc. 98(1), 45–68 (2017)

    Article  Google Scholar 

  28. Pearlman, W.A., Islam, A., Nagaraj, N., Said, A.: Efficient, low-complexity image coding with a set-partitioning embedded block coder. IEEE Trans. Circuits Syst. Video Technol. 14(11), 1219–1235 (2004)

    Article  Google Scholar 

  29. Pittner, S., Kamarthi, S.V.: Feature extraction from wavelet coefficients for pattern recognition tasks. IEEE Trans. Pattern Anal. Mach. Intell. 21(1), 83–88 (1999)

    Article  Google Scholar 

  30. Pulido, J., Livescu, D., Kanov, K., Burns, R., Canada, C., Ahrens, J., Hamann, B.: Remote visual analysis of large turbulence databases at multiple scales. J. Parallel Distrib. Comput. 120, 115–126 (2018)

    Article  Google Scholar 

  31. Pulido, J., Livescu, D., Woodring, J., Ahrens, J., Hamann, B.: Survey and analysis of multiresolution methods for turbulence data. Comput. Fluids 125, 39–58 (2016)

    Article  MathSciNet  Google Scholar 

  32. Said, A., Pearlman, W.A.: Image compression using the spatial-orientation tree. In: IEEE International Symposium on Circuits and Systems (ISCAS’93), pp. 279–282. IEEE (1993)

    Google Scholar 

  33. Sardy, S., Tseng, P., Bruce, A.: Robust wavelet denoising. IEEE Trans. Signal Process. 49(6), 1146–1152 (2001)

    Article  Google Scholar 

  34. Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process. 41(12), 3445–3462 (1993)

    Article  Google Scholar 

  35. Shneiderman, B.: A grander goal: a thousand-fold increase in human capabilities. Educom Rev. 32(6), 4–10 (1997)

    Google Scholar 

  36. Skodras, A., Christopoulos, C., Ebrahimi, T.: The JPEG2000 still image compression standard. IEEE Signal Process. Mag. 18(5), 36–58 (2001)

    Article  Google Scholar 

  37. Tang, X., Pearlman, W.A., Modestino, J.W.: Hyperspectral image compression using three-dimensional wavelet coding. In: Electronic Imaging 2003, pp. 1037–1047. International Society for Optics and Photonics (2003)

    Google Scholar 

  38. Tang, Y.Y.: Wavelet theory and its application to pattern recognition, vol. 36. World Scientific (2000)

    Google Scholar 

  39. Taubman, D.: High performance scalable image compression with EBCOT. IEEE Trans. Image Process. 9(7), 1158–1170 (2000)

    Article  MathSciNet  Google Scholar 

  40. Wang, C., Shen, H.W.: A framework for rendering large time-varying data using wavelet-based time-space partitioning (wtsp) tree. Technical Report OSU-CISRC-1/04-TR05 (2004)

    Google Scholar 

  41. Wei, D.: Coiflet-type wavelets: theory, design, and applications. Ph.D. thesis, University of Texas at Austin (1998)

    Google Scholar 

  42. Zhang, L., Bao, P.: Edge detection by scale multiplication in wavelet domain. Pattern Recognit. Lett. 23(14), 1771–1784 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977. Computing resources were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory (CISL). This work was also supported by the DOE Early Career Award for Hank Childs, Contract No. DE-SC0010652, Program Manager Lucy Nowell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaomeng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Clyne, J., Childs, H. (2022). In Situ Wavelet Compression on Supercomputers for Post Hoc Exploration. In: Childs, H., Bennett, J.C., Garth, C. (eds) In Situ Visualization for Computational Science. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-81627-8_3

Download citation

Publish with us

Policies and ethics