Abstract
In situ visualization increasingly involves rendering large numbers of images for post hoc exploration. As both the number of images to be rendered and the data being rendered are large, the scalability of the rendering component is of key concern. Furthermore, the renderer must be able to support a wide range of data distributions, simulation configurations, and HPC systems to provide the flexibility required for a portable, general purpose in situ rendering package. In this chapter, we discuss recent developments in OSPRay’s support for MPI-parallel applications to provide a flexible and scalable rendering API, with a focus on how these developments can be applied to enable scalable, high-quality in situ visualization.
This is a preview of subscription content, access via your institution.
Buying options








References
Abram, G., Navrátil, P., Grosset, A.V.P., Rogers, D., Ahrens, J.: Galaxy: asynchronous ray tracing for large high-fidelity visualization. In: 2018 IEEE Symposium on Large Data Analysis and Visualization (2018)
Aftosmis, M., Berger, M., Adomavicius, G.: A parallel multilevel method for adaptively refined cartesian grids with embedded boundaries. Technical Report AIAA-00-0808, American Institute of Aeronautics and Astronautics (2000). 38th Aerospace Sciences Meeting and Exhibit
Ahrens, J., Jourdain, S., O’Leary, P., Patchett, J., Rogers, D.H., Petersen, M.: An image-based approach to extreme scale in situ visualization and analysis. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (2014)
Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. (1989)
Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. (1984)
Biedert, T., Werner, K., Hentschel, B., Garth, C.: A Task-Based Parallel Rendering Component For Large-Scale Visualization Applications. In: Eurographics Symposium on Parallel Graphics and Visualization (2017)
Bigler, J., Stephens, A., Parker, S.G.: Design for parallel interactive ray tracing systems. In: 2006 IEEE Symposium on Interactive Ray Tracing (2006)
Burstedde, C., Wilcox, L.C., Ghattas, O.: P4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. (2011)
Cohen, R.H., Dannevik, W.P., Dimits, A.M., Eliason, D.E., Mirin, A.A., Zhou, Y., Porter, D.H., Woodward, P.R.: Three-dimensional simulation of a Richtmyer-Meshkov instability with a two-scale initial perturbation. Phys. Fluids (2002)
Colella, P., Graves, D., Ligocki, T., Martin, D., Modiano, D., Serafini, D., Van Straalen, B.: Chombo software package for amr applications design document (2000)
Cook, A.W., Cabot, W., Miller, P.L.: The mixing transition in Rayleigh–Taylor instability. J. Fluid Mech. (2004)
DeMarle, D.E., Gribble, C.P., Boulos, S., Parker, S.G.: Memory sharing for interactive ray tracing on clusters. Parallel Comput. (2005)
Demiralp, A.C., Zielasko, D., Axer, M., Vierjahn, T., Kuhlen, T.W.: Parallel particle advection and lagrangian analysis for 3D-PLI fiber orientation maps. In: 2019 IEEE 9th Symposium on Large Data Analysis and Visualization (LDAV), Posters (2019)
Ellsworth, D., Green, B., Henze, C., Moran, P., Sandstrom, T.: Concurrent visualization in a production supercomputing environment. IEEE Trans. Vis. Comput. Graph. (2006)
Fabian, N., Moreland, K., Thompson, D., Bauer, A., Marion, P., Geveci, B., Rasquin, M., Jansen, K.E.: The paraview coprocessing library: a scalable, general purpose in situ visualization library. In: 2011 IEEE Symposium on Large Data Analysis and Visualization (2011)
Favre, J.M., dos Santos, L.P., Reiners, D.: Direct send compositing for parallel sort-last rendering. In: Eurographics Symposium on Parallel Graphics and Visualization (2007)
Fernandes, O., Frey, S., Sadlo, F., Ertl, T.: Space-time volumetric depth images for in-situ visualization. In: 2014 IEEE 4th Symposium On Large Data Analysis and Visualization (LDAV) (2014)
Frey, S., Ertl, T.: Load balancing utilizing data redundancy in distributed volume rendering. In: Eurographics Symposium on Parallel Graphics and Visualization (2011)
Grosset, A.P., Knoll, A., Hansen, C.: Dynamically scheduled region-based image compositing. In: Eurographics Symposium on Parallel Graphics and Visualization (2016)
Grosset, A.V.P., Prasad, M., Christensen, C., Knoll, A., Hansen, C.: TOD-tree: task-overlapped direct send tree image compositing for hybrid MPI parallelism and GPUs. IEEE Trans. Vis. Comput. Graph. (2017)
Han, M., Wald, I., Usher, W., Wu, Q., Wang, F., Pascucci, V., Hansen, C.D., Johnson, C.R.: Ray tracing generalized tube primitives: method and applications. Comput. Graph. Forum (2019). https://doi.org/10.1111/cgf.13703
Hsu, W.M.: Segmented ray casting for data parallel volume rendering. In: Proceedings of the 1993 Symposium on Parallel Rendering (1993)
Ibrahim, S., Stitt, T., Larsen, M., Harrison, C.: Interactive in situ visualization and analysis using ascent and jupyter. In: Proceedings of the Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization. Denver Colorado (2019)
Intel: OneAPI Rendering Toolkit. https://software.intel.com/en-us/rendering-framework
Intel: Open Image Denoise. https://www.openimagedenoise.org
Intel: Open Volume Kernel Library. https://www.openvkl.org
Ize, T., Brownlee, C., Hansen, C.D.: Real-time ray tracer for visualizing massive models on a cluster. In: Eurographics Symposium on Parallel Graphics and Visualization (2011)
Kageyama, A., Yamada, T.: An approach to exascale visualization: interactive viewing of in-situ visualization. Comput. Phys. Commun. (2014)
Karlsson, J., Abdellah, M., Speierer, S., Foni, A., Lapere, S., Schürmann, F.: High fidelity visualization of large scale digitally reconstructed brain circuitry with signed distance functions. In: 2019 IEEE Visualization Conference (VIS) (2019)
Kendall, W., Peterka, T., Huang, J., Shen, H.W., Ross, R.B.: Accelerating and benchmarking radix-k image compositing at large scale. In: Eurographics Symposium on Parallel Graphics and Visualization (2010)
Ma, K.L., Painter, J.S., Hansen, C.D., Krogh, M.F.: Parallel volume rendering using binary-swap compositing. IEEE Comput. Graph. Appl. (1994)
MacNeice, P., Olson, K.M., Mobarry, C., de Fainchtein, R., Packer, C.: PARAMESH: a parallel adaptive mesh refinement community toolkit. Comput. Phys. Commun. (2000)
Moreland, K., Kendall, W., Peterka, T., Huang, J.: An image compositing solution at scale. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (2011)
Navrátil, P.A., Fussell, D., Lin, C., Childs, H.: Dynamic scheduling for large-scale distributed-memory ray tracing. In: Eurographics Symposium on Parallel Graphics and Visualization (2012)
O’shea, B.W., Bryan, G., Bordner, J., Norman, M.L., Abel, T., Harkness, R., Kritsuk, A.: Introducing Enzo, an AMR cosmology application. In: Adaptive Mesh Refinement-Theory and Applications, Lecture Notes in Computational Science and Engineering. Springer (2005)
Park, H., Fussell, D., Navrátil, P.: SpRay: speculative ray scheduling for large data visualization. In: 2018 IEEE Symposium on Large Data Analysis and Visualization (2018)
Peterka, T., Goodell, D., Ross, R., Shen, H.W., Thakur, R.: A configurable algorithm for parallel image-compositing applications. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (2009)
Pharr, M., Mark, W.R.: ispc: A SPMD compiler for high-performance CPU programming. In: Innovative Parallel Computing (InPar) (2012)
Reinhard, E., Chalmers, A., Jansen, F.W.: Hybrid scheduling for parallel rendering using coherent ray tasks. In: Proceedings of the 1999 IEEE Symposium on Parallel Visualization and Graphics (1999)
Rizzi, S., Hereld, M., Insley, J., Papka, M.E., Uram, T., Vishwanath, V.: Large-scale co-visualization for lammps using Vl3. In: 2015 IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV) (2015)
Tu, T., Yu, H., Ramirez-Guzman, L., Bielak, J., Ghattas, O., Ma, K.L., O’hallaron, D.R.: From mesh generation to scientific visualization: an end-to-end approach to parallel supercomputing. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (2006)
Turuncoglu, U.U., Önol, B., Ilicak, M.: A new approach for in situ analysis in fully coupled earth system models. In: Proceedings of the Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization - ISAV ’19. Denver, Colorado (2019)
Usher, W., Rizzi, S., Wald, I., Amstutz, J., Insley, J., Vishwanath, V., Ferrier, N., Papka, M.E., Pascucci, V.: libIS: A lightweight library for flexible in transit visualization. In: ISAV: In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (2018)
Usher, W., Wald, I., Amstutz, J., Günther, J., Brownlee, C., Pascucci, V.: Scalable ray tracing using the distributed framebuffer. Comput. Graph. Forum (2019)
Usher, W., Wald, I., Knoll, A., Papka, M.E., Pascucci, V.: In situ exploration of particle simulations with CPU ray tracing. Supercomput. Front. Innov. (2016)
Vierjahn, T., Schnorr, A., Weyers, B., Denker, D., Wald, I., Garth, C., Kuhlen, T.W., Hentschel, B.: Interactive exploration of dissipation element geometry. In: Eurographics Symposium on Parallel Graphics and Visualization (2017)
Wald, I., Benthin, C., Slusallek, P.: A flexible and scalable rendering engine for interactive 3D graphics. Saarland University, Technical report (2002)
Wald, I., Brownlee, C., Usher, W., Knoll, A.: CPU volume rendering of adaptive mesh refinement data. In: SIGGRAPH Asia 2017 Symposium on Visualization (2017)
Wald, I., Johnson, G.P., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Günther, J., Navrátil, P.: OSPRay—a CPU ray tracing framework for scientific visualization. IEEE Trans. Vis. Comput. Graph. (2017)
Wald, I., Knoll, A., Johnson, G.P., Usher, W., Pascucci, V., Papka, M.E.: CPU ray tracing large particle data with balanced P-k-d trees. In: 2015 IEEE Scientific Visualization Conference (SciVis), pp. 57–64 (2015)
Wald, I., Woop, S., Benthin, C., Johnson, G.S., Ernst, M.: Embree: A kernel framework for efficient CPU ray tracing. ACM Trans. Graph. (2014)
Wang, K.C., Shareef, N., Shen, H.W.: Image and distribution based volume rendering for large data sets. In: 2018 IEEE Pacific Visualization Symposium (PacificVis) (2018)
Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation with a fully featured visualization system. In: Eurographics Symposium on Parallel Graphics and Visualization (2011)
Wu, Q., Usher, W., Petruzza, S., Kumar, S., Wang, F., Wald, I., Pascucci, V., Hansen, C.D.: VisIt-OSPRay: toward an exascale volume visualization system. In: Eurographics Symposium on Parallel Graphics and Visualization (2018)
Yu, H., Wang, C., Grout, R.W., Chen, J.H., Ma, K.L.: In situ visualization for large-scale combustion simulations. IEEE Comput. Graph. Appl. (2010)
Yu, H., Wang, C., Ma, K.L.: Massively parallel volume rendering using 2–3 swap image compositing. In: SC-International Conference for High Performance Computing, Networking, Storage and Analysis (2008)
Yucong, Y., Miller, R., Ma, K.L.: In situ pathtube visualization with explorable images. In: Proceedings of the 13th Eurographics Symposium on Parallel Graphics and Visualization (2013)
Acknowledgements
The Miranda data set is courtesy Andrew W. Cook, William Cabot, and Paul L. Miller, the Richtmyer-Meshkov is courtesy Ronald H. Cohen, William P. Dannevik, Andris M. Dimits, Donald E. Eliason, Arthur A. Mirin, and Ye Zhou. Both data sets were made available through the Open Scientific Visualization Datasets repository. This work is supported in part by the Intel Graphics and Visualization Institute of eXcellence at the Scientific Computing and Imaging Institute, University of Utah. This work is supported in part by NSF: CGV Award: 1314896, NSF:IIP Award: 1602127, NSF:ACI Award: 1649923, DOE/SciDAC DESC0007446, CCMSC DE-NA0002375 and NSF:OAC Award: 1842042. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported in this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Usher, W. et al. (2022). Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay. In: Childs, H., Bennett, J.C., Garth, C. (eds) In Situ Visualization for Computational Science. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-81627-8_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-81627-8_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81626-1
Online ISBN: 978-3-030-81627-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)