Skip to main content

Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay

  • 311 Accesses

Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

In situ visualization increasingly involves rendering large numbers of images for post hoc exploration. As both the number of images to be rendered and the data being rendered are large, the scalability of the rendering component is of key concern. Furthermore, the renderer must be able to support a wide range of data distributions, simulation configurations, and HPC systems to provide the flexibility required for a portable, general purpose in situ rendering package. In this chapter, we discuss recent developments in OSPRay’s support for MPI-parallel applications to provide a flexible and scalable rendering API, with a focus on how these developments can be applied to enable scalable, high-quality in situ visualization.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-81627-8_16
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-81627-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    https://github.com/Twinklebear/osp-icet.

  2. 2.

    https://github.com/Twinklebear/ospray_senpai.

  3. 3.

    https://github.com/Twinklebear/mini-cinema.

References

  1. Abram, G., Navrátil, P., Grosset, A.V.P., Rogers, D., Ahrens, J.: Galaxy: asynchronous ray tracing for large high-fidelity visualization. In: 2018 IEEE Symposium on Large Data Analysis and Visualization (2018)

    Google Scholar 

  2. Aftosmis, M., Berger, M., Adomavicius, G.: A parallel multilevel method for adaptively refined cartesian grids with embedded boundaries. Technical Report AIAA-00-0808, American Institute of Aeronautics and Astronautics (2000). 38th Aerospace Sciences Meeting and Exhibit

    Google Scholar 

  3. Ahrens, J., Jourdain, S., O’Leary, P., Patchett, J., Rogers, D.H., Petersen, M.: An image-based approach to extreme scale in situ visualization and analysis. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (2014)

    Google Scholar 

  4. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. (1989)

    Google Scholar 

  5. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. (1984)

    Google Scholar 

  6. Biedert, T., Werner, K., Hentschel, B., Garth, C.: A Task-Based Parallel Rendering Component For Large-Scale Visualization Applications. In: Eurographics Symposium on Parallel Graphics and Visualization (2017)

    Google Scholar 

  7. Bigler, J., Stephens, A., Parker, S.G.: Design for parallel interactive ray tracing systems. In: 2006 IEEE Symposium on Interactive Ray Tracing (2006)

    Google Scholar 

  8. Burstedde, C., Wilcox, L.C., Ghattas, O.: P4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. (2011)

    Google Scholar 

  9. Cohen, R.H., Dannevik, W.P., Dimits, A.M., Eliason, D.E., Mirin, A.A., Zhou, Y., Porter, D.H., Woodward, P.R.: Three-dimensional simulation of a Richtmyer-Meshkov instability with a two-scale initial perturbation. Phys. Fluids (2002)

    Google Scholar 

  10. Colella, P., Graves, D., Ligocki, T., Martin, D., Modiano, D., Serafini, D., Van Straalen, B.: Chombo software package for amr applications design document (2000)

    Google Scholar 

  11. Cook, A.W., Cabot, W., Miller, P.L.: The mixing transition in Rayleigh–Taylor instability. J. Fluid Mech. (2004)

    Google Scholar 

  12. DeMarle, D.E., Gribble, C.P., Boulos, S., Parker, S.G.: Memory sharing for interactive ray tracing on clusters. Parallel Comput. (2005)

    Google Scholar 

  13. Demiralp, A.C., Zielasko, D., Axer, M., Vierjahn, T., Kuhlen, T.W.: Parallel particle advection and lagrangian analysis for 3D-PLI fiber orientation maps. In: 2019 IEEE 9th Symposium on Large Data Analysis and Visualization (LDAV), Posters (2019)

    Google Scholar 

  14. Ellsworth, D., Green, B., Henze, C., Moran, P., Sandstrom, T.: Concurrent visualization in a production supercomputing environment. IEEE Trans. Vis. Comput. Graph. (2006)

    Google Scholar 

  15. Fabian, N., Moreland, K., Thompson, D., Bauer, A., Marion, P., Geveci, B., Rasquin, M., Jansen, K.E.: The paraview coprocessing library: a scalable, general purpose in situ visualization library. In: 2011 IEEE Symposium on Large Data Analysis and Visualization (2011)

    Google Scholar 

  16. Favre, J.M., dos Santos, L.P., Reiners, D.: Direct send compositing for parallel sort-last rendering. In: Eurographics Symposium on Parallel Graphics and Visualization (2007)

    Google Scholar 

  17. Fernandes, O., Frey, S., Sadlo, F., Ertl, T.: Space-time volumetric depth images for in-situ visualization. In: 2014 IEEE 4th Symposium On Large Data Analysis and Visualization (LDAV) (2014)

    Google Scholar 

  18. Frey, S., Ertl, T.: Load balancing utilizing data redundancy in distributed volume rendering. In: Eurographics Symposium on Parallel Graphics and Visualization (2011)

    Google Scholar 

  19. Grosset, A.P., Knoll, A., Hansen, C.: Dynamically scheduled region-based image compositing. In: Eurographics Symposium on Parallel Graphics and Visualization (2016)

    Google Scholar 

  20. Grosset, A.V.P., Prasad, M., Christensen, C., Knoll, A., Hansen, C.: TOD-tree: task-overlapped direct send tree image compositing for hybrid MPI parallelism and GPUs. IEEE Trans. Vis. Comput. Graph. (2017)

    Google Scholar 

  21. Han, M., Wald, I., Usher, W., Wu, Q., Wang, F., Pascucci, V., Hansen, C.D., Johnson, C.R.: Ray tracing generalized tube primitives: method and applications. Comput. Graph. Forum (2019). https://doi.org/10.1111/cgf.13703

  22. Hsu, W.M.: Segmented ray casting for data parallel volume rendering. In: Proceedings of the 1993 Symposium on Parallel Rendering (1993)

    Google Scholar 

  23. Ibrahim, S., Stitt, T., Larsen, M., Harrison, C.: Interactive in situ visualization and analysis using ascent and jupyter. In: Proceedings of the Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization. Denver Colorado (2019)

    Google Scholar 

  24. Intel: OneAPI Rendering Toolkit. https://software.intel.com/en-us/rendering-framework

  25. Intel: Open Image Denoise. https://www.openimagedenoise.org

  26. Intel: Open Volume Kernel Library. https://www.openvkl.org

  27. Ize, T., Brownlee, C., Hansen, C.D.: Real-time ray tracer for visualizing massive models on a cluster. In: Eurographics Symposium on Parallel Graphics and Visualization (2011)

    Google Scholar 

  28. Kageyama, A., Yamada, T.: An approach to exascale visualization: interactive viewing of in-situ visualization. Comput. Phys. Commun. (2014)

    Google Scholar 

  29. Karlsson, J., Abdellah, M., Speierer, S., Foni, A., Lapere, S., Schürmann, F.: High fidelity visualization of large scale digitally reconstructed brain circuitry with signed distance functions. In: 2019 IEEE Visualization Conference (VIS) (2019)

    Google Scholar 

  30. Kendall, W., Peterka, T., Huang, J., Shen, H.W., Ross, R.B.: Accelerating and benchmarking radix-k image compositing at large scale. In: Eurographics Symposium on Parallel Graphics and Visualization (2010)

    Google Scholar 

  31. Ma, K.L., Painter, J.S., Hansen, C.D., Krogh, M.F.: Parallel volume rendering using binary-swap compositing. IEEE Comput. Graph. Appl. (1994)

    Google Scholar 

  32. MacNeice, P., Olson, K.M., Mobarry, C., de Fainchtein, R., Packer, C.: PARAMESH: a parallel adaptive mesh refinement community toolkit. Comput. Phys. Commun. (2000)

    Google Scholar 

  33. Moreland, K., Kendall, W., Peterka, T., Huang, J.: An image compositing solution at scale. In: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (2011)

    Google Scholar 

  34. Navrátil, P.A., Fussell, D., Lin, C., Childs, H.: Dynamic scheduling for large-scale distributed-memory ray tracing. In: Eurographics Symposium on Parallel Graphics and Visualization (2012)

    Google Scholar 

  35. O’shea, B.W., Bryan, G., Bordner, J., Norman, M.L., Abel, T., Harkness, R., Kritsuk, A.: Introducing Enzo, an AMR cosmology application. In: Adaptive Mesh Refinement-Theory and Applications, Lecture Notes in Computational Science and Engineering. Springer (2005)

    Google Scholar 

  36. Park, H., Fussell, D., Navrátil, P.: SpRay: speculative ray scheduling for large data visualization. In: 2018 IEEE Symposium on Large Data Analysis and Visualization (2018)

    Google Scholar 

  37. Peterka, T., Goodell, D., Ross, R., Shen, H.W., Thakur, R.: A configurable algorithm for parallel image-compositing applications. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis (2009)

    Google Scholar 

  38. Pharr, M., Mark, W.R.: ispc: A SPMD compiler for high-performance CPU programming. In: Innovative Parallel Computing (InPar) (2012)

    Google Scholar 

  39. Reinhard, E., Chalmers, A., Jansen, F.W.: Hybrid scheduling for parallel rendering using coherent ray tasks. In: Proceedings of the 1999 IEEE Symposium on Parallel Visualization and Graphics (1999)

    Google Scholar 

  40. Rizzi, S., Hereld, M., Insley, J., Papka, M.E., Uram, T., Vishwanath, V.: Large-scale co-visualization for lammps using Vl3. In: 2015 IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV) (2015)

    Google Scholar 

  41. Tu, T., Yu, H., Ramirez-Guzman, L., Bielak, J., Ghattas, O., Ma, K.L., O’hallaron, D.R.: From mesh generation to scientific visualization: an end-to-end approach to parallel supercomputing. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (2006)

    Google Scholar 

  42. Turuncoglu, U.U., Önol, B., Ilicak, M.: A new approach for in situ analysis in fully coupled earth system models. In: Proceedings of the Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization - ISAV ’19. Denver, Colorado (2019)

    Google Scholar 

  43. Usher, W., Rizzi, S., Wald, I., Amstutz, J., Insley, J., Vishwanath, V., Ferrier, N., Papka, M.E., Pascucci, V.: libIS: A lightweight library for flexible in transit visualization. In: ISAV: In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (2018)

    Google Scholar 

  44. Usher, W., Wald, I., Amstutz, J., Günther, J., Brownlee, C., Pascucci, V.: Scalable ray tracing using the distributed framebuffer. Comput. Graph. Forum (2019)

    Google Scholar 

  45. Usher, W., Wald, I., Knoll, A., Papka, M.E., Pascucci, V.: In situ exploration of particle simulations with CPU ray tracing. Supercomput. Front. Innov. (2016)

    Google Scholar 

  46. Vierjahn, T., Schnorr, A., Weyers, B., Denker, D., Wald, I., Garth, C., Kuhlen, T.W., Hentschel, B.: Interactive exploration of dissipation element geometry. In: Eurographics Symposium on Parallel Graphics and Visualization (2017)

    Google Scholar 

  47. Wald, I., Benthin, C., Slusallek, P.: A flexible and scalable rendering engine for interactive 3D graphics. Saarland University, Technical report (2002)

    Google Scholar 

  48. Wald, I., Brownlee, C., Usher, W., Knoll, A.: CPU volume rendering of adaptive mesh refinement data. In: SIGGRAPH Asia 2017 Symposium on Visualization (2017)

    Google Scholar 

  49. Wald, I., Johnson, G.P., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Günther, J., Navrátil, P.: OSPRay—a CPU ray tracing framework for scientific visualization. IEEE Trans. Vis. Comput. Graph. (2017)

    Google Scholar 

  50. Wald, I., Knoll, A., Johnson, G.P., Usher, W., Pascucci, V., Papka, M.E.: CPU ray tracing large particle data with balanced P-k-d trees. In: 2015 IEEE Scientific Visualization Conference (SciVis), pp. 57–64 (2015)

    Google Scholar 

  51. Wald, I., Woop, S., Benthin, C., Johnson, G.S., Ernst, M.: Embree: A kernel framework for efficient CPU ray tracing. ACM Trans. Graph. (2014)

    Google Scholar 

  52. Wang, K.C., Shareef, N., Shen, H.W.: Image and distribution based volume rendering for large data sets. In: 2018 IEEE Pacific Visualization Symposium (PacificVis) (2018)

    Google Scholar 

  53. Whitlock, B., Favre, J.M., Meredith, J.S.: Parallel in situ coupling of simulation with a fully featured visualization system. In: Eurographics Symposium on Parallel Graphics and Visualization (2011)

    Google Scholar 

  54. Wu, Q., Usher, W., Petruzza, S., Kumar, S., Wang, F., Wald, I., Pascucci, V., Hansen, C.D.: VisIt-OSPRay: toward an exascale volume visualization system. In: Eurographics Symposium on Parallel Graphics and Visualization (2018)

    Google Scholar 

  55. Yu, H., Wang, C., Grout, R.W., Chen, J.H., Ma, K.L.: In situ visualization for large-scale combustion simulations. IEEE Comput. Graph. Appl. (2010)

    Google Scholar 

  56. Yu, H., Wang, C., Ma, K.L.: Massively parallel volume rendering using 2–3 swap image compositing. In: SC-International Conference for High Performance Computing, Networking, Storage and Analysis (2008)

    Google Scholar 

  57. Yucong, Y., Miller, R., Ma, K.L.: In situ pathtube visualization with explorable images. In: Proceedings of the 13th Eurographics Symposium on Parallel Graphics and Visualization (2013)

    Google Scholar 

Download references

Acknowledgements

The Miranda data set is courtesy Andrew W. Cook, William Cabot, and Paul L. Miller, the Richtmyer-Meshkov is courtesy Ronald H. Cohen, William P. Dannevik, Andris M. Dimits, Donald E. Eliason, Arthur A. Mirin, and Ye Zhou. Both data sets were made available through the Open Scientific Visualization Datasets repository. This work is supported in part by the Intel Graphics and Visualization Institute of eXcellence at the Scientific Computing and Imaging Institute, University of Utah. This work is supported in part by NSF: CGV Award: 1314896, NSF:IIP Award: 1602127, NSF:ACI Award: 1649923, DOE/SciDAC DESC0007446, CCMSC DE-NA0002375 and NSF:OAC Award: 1842042. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing HPC resources that have contributed to the research results reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Will Usher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Usher, W. et al. (2022). Scalable CPU Ray Tracing for In Situ Visualization Using OSPRay. In: Childs, H., Bennett, J.C., Garth, C. (eds) In Situ Visualization for Computational Science. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-81627-8_16

Download citation