Skip to main content

Regulation of Nonribosomal Peptide Synthesis as a Mechanism of Antifungal Activity of Probiotics Based on the Bacteria Genera Bacillus and Paenibacillus

  • Conference paper
  • First Online:
XIV International Scientific Conference “INTERAGROMASH 2021"

Abstract

Recently, spore-forming bacteria have been frequently used to solve various problems of humanity. They are used in the creation of probiotic additives to improve the agricultural traits of animals (egg production in chickens, resistance to disease, the ability to better process feed, etc.), in the creation of probiotics for humans, as well as in the design of biological products to combat plant pests. All of the above properties are associated with secondary metabolites of different nature, of which a group of non-ribosomal-synthesized peptides stands out. This is related not only to their broad functional significance but also to their significant representation in spore-forming bacteria. The aim of this article is to demonstrate the regulation of the expression of genes responsible for the synthesis of NRPS (non-ribosomal peptide synthases) as a mechanism of antifungal activity of spore-forming bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dykstra, M.J., Charlton, B.R., Chin, P., Barnes, H.J.: In Dis. Poult. Wiley, New York, pp. 1075–96 (2013). https://doi.org/10.1002/9781119421481.ch25

  2. Pristov, K.E., Ghannoum, M.A.: Clin. Microbiol. Infect. 25, 792–798 (2019). https://doi.org/10.1016/j.cmi.2019.03.028

  3. Zhang, X.. O’donnell, K., Sutton, A.: Manual Clin. Microbiol. 2057–2086 (2015). https://doi.org/10.1128/9781555817381.ch120

  4. Munkvold, P.: Mycotoxigenic Fungi, pp. 51–106 (2017). https://doi.org/10.1007/978-1-4939-6707-0_4

  5. Fourie, G., Steenkamp, E.T., Ploetz, R.C., Gordon, T.R., Viljoen, A.: Infection. Genetics Evolution 11, 533–542 (2011). https://doi.org/10.1016/j.meegid.2011.01.012

  6. Köhler, A., Assefa, D., Reid, G.: Infect. Dis. Obstet. Gynecol., p. e636474 (2012). https://doi.org/10.1155/2012/636474

  7. Abou-Kassem, D.E., Elsadek, M.F., Abdel-Moneim, A.E., Mahgoub, S.A., Elaraby, G.M., Taha, A.E., Elshafie, M.M., Alkhawtani, D.M.: Poult. Sci. 100, 84–93 (2021). https://doi.org/10.1016/j.psj.2020.04.019

  8. Aliakbarpour, H.R., Chamani, M.: Asian-Australas J. Anim. Sci. 25, 1285–1293 (2012). https://doi.org/10.5713/ajas.2012.12110

  9. Ribeiro, F.C., Rossoni, R.D., de Barros, P.P., Santos, J.D.: J. Appl. Microbiol. 129, 175–185 (2020). https://doi.org/10.1111/jam.14511

  10. Jip. S. Ohh: Asian-Australasian J. Animal Sci. 24, 573–586 (2011). 2011.24.4.573

    Google Scholar 

  11. Sheng, M., Jia, H., Zhang, G., Zeng, L.: J. Microbiol. Biotechnol. 30, 689–699 (2020). https://doi.org/10.4014/jmb.1910.10066

  12. Caulier, S., Nannan, C.: Annika Gillis 10 (2019). https://doi.org/10.3389/fmicb.2019.00302

  13. Rautela, R.: Anil Kumar Singh, Abha Shukla, and Swaranjit Singh Cameotra. Antonie Van Leeuwenhoek 105, 809–821 (2014). https://doi.org/10.1007/s10482-014-0135-2

  14. Tabbene, O., Kalai, L.: Imen Ben Slimene, Ines Karkouch, Salem Elkahoui, Abdelhamid Gharbi, Pascal Cosette, Maria-Luisa Mangoni, Thierry Jouenne, and Ferid Limam. FEMS Microbiol. Lett. 316, 108–114 (2011). https://doi.org/10.1111/j.1574-6968.2010.02199.x

  15. Liu, Y., Jing, Lu., Sun, J., Zhu, X., Zhou, L., Zhaoxin, Lu., Yingjian, Lu.: Appl. Microbiol. Biotechnol. 103, 8963–8975 (2019). https://doi.org/10.1007/s00253-019-10117-5

  16. Lei, S., Zhao, H., Pang, B., Rui, Qu., Lian, Z., Jiang, C., Shao, D., Huang, Q., Jin, M., Shi, J.: Appl. Microbiol. Biotechnol. 103, 4377–4392 (2019). https://doi.org/10.1007/s00253-019-09805-z

  17. Hartmann, A., Schikora, A.: J. Chem. Ecol. 38, 704–713 (2012). https://doi.org/10.1007/s10886-012-0141-7

  18. Simon, C.M.: Food Microbiol. 28, 214–220 (2011). https://doi.org/10.1016/j.fm.2010.03.007

  19. Khan, N., Maymon, M., Hirsch, A.M.: Microorganisms 5, 75 (2017). https://doi.org/10.3390/microorganisms5040075

  20. Liu, X., Ren, B., Gao, H., Liu, M., Dai, H., Song, F., Zhenyan, Yu., Wang, S., Jiangchun, Hu., Kokare, C.R.: PLoS ONE 7, e34430 (2012). https://doi.org/10.1371/journal.pone.003443

  21. Abdelli, F., Jardak, M., Elloumi, J., Stien, D., Cherif, S., Mnif, S., Aifa, S.: Biodegradation 30, 287–300 (2019). https://doi.org/10.1007/s10532-018-09865-4

  22. Sur, S., Romo, T.D., Grossfield, A.: J. Phys. Chem. B 122, 2219–2226 (2018). https://doi.org/10.1021/acs.jpcb.7b11889

  23. Alvarez, F., Castro, M., Principe, A., Borioli, G., Fischer, S., Mori, G., Jofre, E.: J. Appl. Microbiol. 112, 159–174 (2012). https://doi.org/10.1111/j.1365-2672.2011.05182.x

  24. Falardeau, J., Wise, C., Novitsky, L., Avis, T.J.: J. Chem. Ecol. 39, 869–878 (2013). https://doi.org/10.1007/s10886-013-0319-7

  25. Tang, Q., Bie, X., Zhaoxin, Lu., Lv, F., Tao, Y., Qul, X.: J. Microbiol. 52, 675–680 (2014). https://doi.org/10.1007/s12275-014-3605-3

  26. Tao, Y., Bie, X.-M., Lv, F.-X., Zhao, H.-Z., Lu, Z.-X.: J. Microbiol. 49, 146–150 (2011). https://doi.org/10.1007/s12275-011-0171-9

  27. Bionda, N., Stawikowski, M., Stawikowska, R., Cudic, M., López-Vallejo, F., Treitl, D., Medina-Franco, J., Cudic, P.: Chem. Med. Chem. 7, 871–882 (2012). https://doi.org/10.1002/cmdc.201200016

  28. Reimann, M., Sandjo, L.P., Antelo, L., Thines, E., Siepe, I., Opatz, T.: Beilstein J. Org. Chem. 13, 1430–1438 (2017). https://doi.org/10.3762/bjoc.13.140

  29. Seo Hyeon Lee: Young Eun Cho, Seung-Hwan Park, Kotnala Balaraju, Jin Woo Park, Se Weon Lee, Kyungseok Park. Phytoparasitica 41, 49–58 (2013). https://doi.org/10.1007/s12600-012-0263-z

  30. Khem, R., Shamsher, S.: Biomed. Res. Int. (2015). https://doi.org/10.1155/2015/473050

  31. Gallardo-Godoy, A., Hansford, K.A., Muldoon, C., Becker, B.: Molecules 24, 553 (2019). https://doi.org/10.3390/molecules24030553

  32. Hsu, L.-H., Wang, H.-F., Sun, P.-L., Fung-Rong, Hu., Chen, Y.-L.: Int. J. Antimicrob. Agents 49, 740–748 (2017). https://doi.org/10.1016/j.ijantimicag.2017.01.029

  33. Wang, P., Guo, Q., Ma, Y., Li, S., Xiuyun, Lu., Zhang, X., Ma, P.: Microbiol. Res. 178, 42–50 (2015). https://doi.org/10.1016/j.micres.2015.06.006

  34. Zhihui, Xu., Zhang, R., Wang, D., Qiu, M., Feng, H.: Appl. Environ. Microbiol 80, 2941–2950 (2014). https://doi.org/10.1128/AEM.03943-13

  35. Chumsakul, O., Takahashi, H., Oshima, T., Hishimoto, T., Kanaya, S., Ogasawara, N., Ishikawa, S.: Nucleic. Acids Res. 39, 414–428 (2011). https://doi.org/10.1093/nar/gkq780

  36. Park, S.-Y., Choi, S.-K., Kim, J., Tae-Kwang, Oh., Park, S.-H.: Appl. Environ. Microbiol. 78, 4194–4199 (2012). https://doi.org/10.1128/AEM.07912-11

  37. Wang, X., Chen, Z., Feng, H., Chen, Xi., Wei, L.: Microb. Cell Fact. 18, 1–12 (2019). https://doi.org/10.1186/s12934-019-1176-z

  38. Rao, X., Huang, X., Zhou, Z.: and Xin Lin. Biostat. Bioinf. Biomath. 3, 71 (2013)

    Google Scholar 

  39. Sokolova, E., Orobets, V., Sevostyanova, O., Gorchakov, E., Rudoy, D., Olshevskaya, A., Babajanyan, A.: INTERAGROMASH 2020 E3S Web of Conf. 175, 03015 (2020) https://doi.org/10.1051/e3sconf/202017503015

  40. Korostylev, N., Prazdnova, E., Mazanko, M., Meskhi, B., Rudoy, D., Ermakov, A., Olshevskaya, O., Chistyakov, A., Zharov, V.: Genetic basis of the probiotic properties of Lactobacillus, EBWFF-2020. E3S Web Conf. 203, 04016 (2020) https://doi.org/10.1051/e3sconf/202020304016

Download references

Acknowledgements

The reported study was funded by RFBR, project number 20-34-90057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita Vasilchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vasilchenko, N., Kulikov, M., Stacenko, V., Pakhomov, V., Kulikova, N., Gordeeva, N. (2022). Regulation of Nonribosomal Peptide Synthesis as a Mechanism of Antifungal Activity of Probiotics Based on the Bacteria Genera Bacillus and Paenibacillus. In: Beskopylny, A., Shamtsyan, M. (eds) XIV International Scientific Conference “INTERAGROMASH 2021". Lecture Notes in Networks and Systems, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-030-81619-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81619-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81618-6

  • Online ISBN: 978-3-030-81619-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics