Skip to main content

Mechanical and Biologic Properties of Articular Cartilage Repair Biomaterials

  • Chapter
  • First Online:
Orthopaedic Biomechanics in Sports Medicine

Abstract

Chondral regeneration and repair is a field of orthopaedics that has had exponential growth in the last decade. The use of various cells, stem cells and repair techniques have shown encouraging results for addressing chondral joint pathologies. The biomechanics of cartilage has been further researched to understand the requirements of the regenerate tissue and the possible materials that may be utilised in combination to improve results. A variety of materials have been used each having their own benefits and drawbacks. The function and structure of chondral tissue is complex and so in order for a biomaterial to resemble cartilage it must be carefully selected and modified accordingly. In this chapter, we discuss the biomechanical roles of cartilage and the current available biomaterials that have been developed to aid in chondral repair techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  1. Karuppal R. Current concepts in the articular cartilage repair and regeneration. J Orthop. 2017;14(2):A1.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Getgood A, Brooks R, Fortier L, Rushton N. Articular cartilage tissue engineering: Today’s research, tomorrow’s practice? Journal of Bone and Joint Surgery - Series B. 2009;91(5):565–76.

    Article  CAS  Google Scholar 

  3. Spiller KL, Maher SA, Lowman AM. Hydrogels for the repair of articular cartilage defects. Tissue Eng - Part B Rev. 2016;17(4):281–99.

    Article  CAS  Google Scholar 

  4. Vega SL, Kwon MY, Burdick JA. Recent advances in hydrogels for cartilage tissue engineering. Eur Cells Mater. 2017;33:59.

    Article  CAS  Google Scholar 

  5. Ando W, Tateishi K, Hart DA, Katakai D, Tanaka Y, Nakata K, et al. Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials. 2007;28(36):5462–70.

    Article  CAS  PubMed  Google Scholar 

  6. Ge Z, Li C, Heng BC, Cao G, Yang Z. Functional biomaterials for cartilage regeneration. Journal of Biomedical Materials Research - Part A. 2012;100(9):2526–36.

    PubMed  Google Scholar 

  7. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1(6):461–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Williams RJ, Peterson L, Cole BJ. Cartilage repair strategies. Cartilage repair strategies. Editor. Totowa: Humana Press; 2007.

    Book  Google Scholar 

  9. Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect. 1998;47:477–86.

    CAS  PubMed  Google Scholar 

  10. Poole CA, Flint MH, Beaumont BW. Morphological and functional interrelationships of articular cartilage matrices. J Anat. 1984;138(Pt 1):113.

    PubMed  PubMed Central  Google Scholar 

  11. Malda J, Benders KEM, Klein TJ, de Grauw JC, Kik MJL, Hutmacher DW, et al. Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles. Osteoarthr Cartil. 2012;20(10):1147–51.

    Article  CAS  Google Scholar 

  12. Duarte Campos DF, Drescher W, Rath B, Tingart M, Fischer H. Supporting biomaterials for articular cartilage repair. Cartilage. 2012;3(3):205–21.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mow VC, Guo XE. Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev Biomed Eng. 2002;4(1):175–209.

    Article  CAS  PubMed  Google Scholar 

  14. Vornehm SI, Dudhia J, Von der Mark K, Aigner T. Expression of collagen types IX and XI and other major cartilage matrix components by human fetal chondrocytes in vivo. Matrix Biol. 1996;Jul 1;15(2):91–8.

    Google Scholar 

  15. Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng. 1980;102(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu W, Mow VC, Koob TJ, Eyre DR. Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. J Orthop Res. 1993;11(6):771–81.

    Article  CAS  PubMed  Google Scholar 

  17. Gu WY, Lai WM, Mow VC. A mixture theory for charged-hydrated soft tissues containing ivjulti-electrolytes: passive transport and swelling behaviors. J Biomech Eng. 1998;120(2):169–80.

    Article  CAS  PubMed  Google Scholar 

  18. Lai WM, Hou JS, Mow VC. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng. 1991;113(3):245–58.

    Article  CAS  PubMed  Google Scholar 

  19. Hayes WC, Bodine AJ. Flow-independent viscoelastic properties of articular cartilage matrix. J Biomech. 1978;11(8–9):407–19.

    Article  CAS  PubMed  Google Scholar 

  20. Frank EH, Grodzinsky AJ. Cartilage electromechanics-I. electrokinetic transduction and the effects of electrolyte pH and ionic strength. J Biomech. 1987;20(6):615–27.

    Article  CAS  PubMed  Google Scholar 

  21. Maroudas A, Bullough P. Permeability of articular cartilage [24]. Nature. 1968;50(1):166–77.

    CAS  Google Scholar 

  22. Woo SL-Y, Buckwalter JA, Fung YC. Injury and repair of the musculoskeletal soft tissues. J Biomech Eng 1989;111(1):95–95.

    Google Scholar 

  23. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21.

    Article  CAS  PubMed  Google Scholar 

  24. Li WJ, Danielson KG, Alexander PG, Tuan RS. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(ε-caprolactone) scaffolds. J Biomed Mater Res - Part A. 2003;67(4):1105–14.

    Article  CAS  Google Scholar 

  25. Kelly TAN, Ng KW, Ateshian GA, Hung CT. Analysis of radial variations in material properties and matrix composition of chondrocyte-seeded agarose hydrogel constructs. Osteoarthr Cartil. 2009;17(1):73–82.

    Article  Google Scholar 

  26. Ng KW, Ateshian GA, Hung CT. Zonal chondrocytes seeded in a layered agarose hydrogel create engineered cartilage with depth-dependent cellular and mechanical inhomogeneity. Tissue Eng Part A. 2009;15(9):2315–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xiong JY, Narayanan J, Liu XY, Chong TK, Chen SB, Chung TS. Topology evolution and gelation mechanism of agarose gel. J Phys Chem B. 2005;109(12):5638–43.

    Article  CAS  PubMed  Google Scholar 

  28. Roberts JJ, Martens PJ. Engineering biosynthetic cell encapsulation systems. In: Biosynthetic Polymers for Medical Applications; 2016. p. 205–39

    Book  Google Scholar 

  29. Mouw JK, Case ND, Guldberg RE, Plaas AHK, Levenston ME. Variations in matrix composition and GAG fine structure among scaffolds for cartilage tissue engineering. Osteoarthr Cartil. 2005;13(9):828–36.

    Article  CAS  Google Scholar 

  30. Bian L, Fong JV, Lima EG, Stoker AM, Ateshian GA, Cook JL, et al. Dynamic mechanical loading enhances functional properties of tissue-engineered cartilage using mature canine chondrocytes. Tissue Eng - Part A. 2010;16(5):1781–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan AR, Dong EY, Ateshian GA, Hung CT. Response of engineered cartilage to mechanical insult depends on construct maturity. Osteoarthr Cartil. 2010;18(12):1577–85.

    Article  CAS  Google Scholar 

  32. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Progress in Polymer Science (Oxford). 2012;37(1):106–26.

    Article  CAS  Google Scholar 

  33. Shahin K, Doran PM. Improved seeding of chondrocytes into polyglycolic acid scaffolds using semi-static and alginate loading methods. Biotechnol Prog. 2011;27(1):191–200.

    Article  CAS  PubMed  Google Scholar 

  34. Wan LQ, Jiang J, Miller DE, Guo XE, Mow VC, Lu HH. Matrix deposition modulates the viscoelastic shear properties of hydrogel-based cartilage grafts. Tissue Eng - Part A. 2011;17(7–8):1111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Smidsrød O, Skjåk-Bræk G. Alginate as immobilization matrix for cells. Trends Biotechnol. 1990;8:71–8.

    Article  PubMed  Google Scholar 

  36. Al-Shamkhani A, Duncan R. Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo. J Bioact Compat Polym. 1995;10(1):4–13.

    Article  CAS  Google Scholar 

  37. Chandy T. Sharma’ CP. Chitosan - as a biomaterial. Biomater Artif Cells Artif Organs. 1990;18(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  38. Tan H, Chu CR, Payne KA, Marra KG. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials. 2009;30(13):2499–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H. Biomedical applications of chitin and chitosan based nanomaterials - a short review. Carbohydr Polym. 2010;82(2):227–32.

    Article  CAS  Google Scholar 

  40. Lee KY, Ha WS, Park WH. Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials. 1995;16(16):1211–6.

    Article  CAS  PubMed  Google Scholar 

  41. Hao T, Wen N, Cao JK, Wang HB, Lü SH, Liu T, et al. The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthr Cartil. 2010;18(2):257–65.

    Article  CAS  Google Scholar 

  42. Park KM, Lee SY, Joung YK, Na JS, Lee MC, Park KD. Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater. 2009;5(6):1956–65.

    Article  CAS  PubMed  Google Scholar 

  43. Hoemann CD, Sun J, Légaré A, McKee MD, Buschmann MD. Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthr Cartil. 2005;13(4):318–29.

    Article  CAS  Google Scholar 

  44. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62(1):83–99.

    Article  CAS  PubMed  Google Scholar 

  45. Alves da Silva ML, Martins A, Costa-Pinto AR, Correlo VM, Sol P, Bhattacharya M, et al. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. J Tissue Eng Regen Med. 2011;9:722–32.

    Article  CAS  Google Scholar 

  46. Alves da Silva ML, Crawford A, Mundy JM, Correlo VM, Sol P, Bhattacharya M, et al. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Acta Biomater. 2010;6(3):1149–57.

    Article  CAS  PubMed  Google Scholar 

  47. Jančář J, Slovíková A, Amler E, Krupa P, Kecová H, Plánka L, et al. Mechanical response of porous scaffolds for cartilage engineering. Physiol Res. 2007;56(1):S17–25.

    PubMed  Google Scholar 

  48. Hoemann CD, Sun J, McKee MD, Chevrier A, Rossomacha E, Rivard GE, et al. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthr Cartil. 2007;15(1):78–89.

    Article  CAS  Google Scholar 

  49. Hoemann CD, Hurtig M, Rossomacha E, Sun J, Chevrier A, Shive MS, et al. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Jt Surg - Ser A. 2005;87(12):2671–86.

    Article  Google Scholar 

  50. Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J, et al. Novel scaffold-based bst-cargel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Jt Surg - Ser A. 2013;95(18):1640–50.

    Article  Google Scholar 

  51. Shive MS, Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, et al. BST-CarGel® treatment maintains cartilage repair superiority over microfracture at 5 years in a Multicenter randomized controlled trial. Cartilage. 2015;6(2):62–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater. 2011;23(12):H41–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin R, Teixeira LSM, Krouwels A, Dijkstra PJ, Van Blitterswijk CA, Karperien M, et al. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater. 2010;6(6):1968–77.

    Article  CAS  PubMed  Google Scholar 

  54. Hemshekhar M, Thushara RM, Chandranayaka S, Sherman LS, Kemparaju K, Girish KS. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int J Biol Macromol. 2016;86:917–28.

    Article  CAS  PubMed  Google Scholar 

  55. Laurent TC, Laurent UBG, Fraser JRE. The structure and function of hyaluronan: an overview. In: Immunology and Cell Biology. 1996;74(2):a1–7.

    CAS  Google Scholar 

  56. Reitinger S, Lepperdinger G. Hyaluronan, a ready choice to fuel regeneration: a mini-review. Gerontology. 2012;59(1):71–6.

    Article  PubMed  CAS  Google Scholar 

  57. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18(11):1345–60.

    Article  CAS  Google Scholar 

  58. Sommarin Y, Heinegard D. Specific interaction between cartilage proteoglycans and hyaluronic acid at the chondrocyte cell surface. Biochem J. 1983;214(3):777–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hascall VC. Interaction of cartilage proteoglycans with hyaluronic acid. Journal of Supramolecular and Cellular Biochemistry. 1977;7(1):101–20.

    CAS  Google Scholar 

  60. Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6(7):2397–404.

    Article  CAS  PubMed  Google Scholar 

  61. Toole BP. Hyaluronan: From extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4(7):528–39.

    Article  CAS  PubMed  Google Scholar 

  62. Savani RC, Cao G, Pooler PM, Zaman A, Zhou Z, DeLisser HM. Differential involvement of the hyaluronan (HA) receptors CD44 and receptor for HA-mediated motility in endothelial cell function and angiogenesis. J Biol Chem. 2001;276(39):36770–8.

    Article  CAS  PubMed  Google Scholar 

  63. Highley CB, Prestwich GD, Burdick JA. Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr Opin Biotechnol. 2016;40:35–40.

    Article  CAS  PubMed  Google Scholar 

  64. Gobbi A, Karnatzikos G, Scotti C, Mahajan V, Mazzucco L, Grigolo B. One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up. Cartilage. 2011;2(3):286–99.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kon E, Di Martino A, Filardo G, Tetta C, Busacca M, Iacono F, et al. Second-generation autologous chondrocyte transplantation: MRI findings and clinical correlations at a minimum 5-year follow-up. Eur J Radiol. 2011;79(3):382–8.

    Article  CAS  PubMed  Google Scholar 

  66. Ferruzzi A, Buda R, Faldini C, Vannini F, Di Caprio F, Luciani D, et al. Autologous chondrocyte implantation in the knee joint: open compared with arthroscopic technique. Comparison at a minimum follow-up of five years. Journal of Bone and Joint Surgery - Series A. 2008;90(Suppl 4):90–101.

    Article  Google Scholar 

  67. Filardo G, Kon E, Di Martino A, Iacono F, Marcacci M. Arthroscopic second-generation autologous chondrocyte implantation: a prospective 7-year follow-up study. Am J Sports Med. 2011;39(10):2153–60.

    Article  PubMed  Google Scholar 

  68. Wu I, Elisseeff J. Biomaterials and tissue engineering for soft tissue reconstruction. In: Natural and synthetic biomedical polymers; 2014. pp. 235–241.

    Google Scholar 

  69. Ahmed TAE, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Engineering - Part B: Reviews. 2008;14(2):199–215.

    Article  CAS  Google Scholar 

  70. Hogg PJ, Jackson CM. Fibrin monomer protects thrombin from inactivation by heparin-antithrombin III: implications for heparin efficacy. Proc Natl Acad Sci U S A. 1989;86(10):3619–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Silverman RP, Passaretti D, Huang W, Randolph MA, Yaremchuk MJ. Injectable tissue-engineered cartilage using a fibrin glue polymer. Plast Reconstr Surg. 1999;103(7):1809–18.

    Article  CAS  PubMed  Google Scholar 

  72. Fussenegger M, Meinhart J, Höbling W, Kullich W, Funk S, Bernatzky G. Stabilized autologous fibrin-chondrocyte constructs for cartilage repair in vivo. Ann Plast Surg. 2003;51(5):493–8.

    Article  PubMed  Google Scholar 

  73. Sage A, Chang AA, Schumacher BL, Sah RL, Watson D. Cartilage outgrowth in fibrin scaffolds. Am J Rhinol Allergy. 2009;23(5):486–91.

    Article  PubMed  Google Scholar 

  74. Rowe SL, Lee SY, Stegemann JP. Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels. Acta Biomater. 2007;3(1):59–67.

    Article  CAS  PubMed  Google Scholar 

  75. Devolder R, Kong HJ. Hydrogels for in vivo-like three-dimensional cellular studies. Wiley Interdiscip Rev Syst Biol Med. 2012;4(4):351–65.

    Article  CAS  PubMed  Google Scholar 

  76. Kneser U, Voogd A, Ohnolz J, Buettner O, Stangenberg L, Zhang YH, et al. Fibrin gel-immobilized primary osteoblasts in calcium phosphate bone cement: in vivo evaluation with regard to application as injectable biological bone substitute. Cells Tissues Organs. 2005;179(4):158–69.

    Article  CAS  PubMed  Google Scholar 

  77. Lee BP, Dalsin JL, Messersmith PB. Biomimetic adhesive polymers based on mussel adhesive proteins. In: Biological adhesives. 2006 (pp. 257–278). Springer, Berlin.

    Google Scholar 

  78. Wysocka A, Mann K, Bursig H, Dec J, Gaździk TS. Chondrocyte suspension in fibrin glue. Cell Tissue Bank. 2010;11(2):209–15.

    Article  CAS  PubMed  Google Scholar 

  79. Cakmak O, Babakurban ST, Akkuzu HG, Bilgi S, Ovali E, Kongur M, et al. Injectable tissue-engineered cartilage using commercially available fibrin glue. Laryngoscope. 2013;123(12):2986–92.

    Article  CAS  PubMed  Google Scholar 

  80. Shetty AA, Kim SJ, Shetty V, Stelzeneder D, Shetty N, Bilagi P, et al. Autologous bone-marrow mesenchymal cell induced chondrogenesis: single-stage arthroscopic cartilage repair. Tissue Eng Regen Med. 2014;11(3):247–53.

    Article  CAS  Google Scholar 

  81. Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001;221(1–2):1–22.

    Article  CAS  PubMed  Google Scholar 

  82. Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. 2010;341(1):126–40.

    Article  CAS  PubMed  Google Scholar 

  83. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin Signaling. Cell. 2009;139(5):891–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lau YKI, Gobin AM, West JL. Overexpression of lysyl oxidase to increase matrix crosslinking and improve tissue strength in dermal wound healing. Ann Biomed Eng. 2006;34(8):1239–46.

    Article  PubMed  Google Scholar 

  85. Lee CR, Grodzinsky AJ, Spector M. The effects of cross-linking of collagen-glycosaminoglycan scaffolds on compressive stiffness, chondrocyte-mediated contraction, proliferation and biosynthesis. Biomaterials. 2001;22(23):3145–54.

    Article  CAS  PubMed  Google Scholar 

  86. Levett PA, Melchels FPW, Schrobback K, Hutmacher DW, Malda J, Klein TJ. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater. 2014;10(1):214–23.

    Article  CAS  PubMed  Google Scholar 

  87. Levingstone TJ, Thompson E, Matsiko A, Schepens A, Gleeson JP, O’brien FJ. Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater. 2016;32:149–60.

    Article  CAS  PubMed  Google Scholar 

  88. Chen WC, Yao CL, Wei YH, Chu IM. Evaluating osteochondral defect repair potential of autologous rabbit bone marrow cells on type II collagen scaffold. Cytotechnology. 2011;63(1):13–23.

    Article  PubMed  CAS  Google Scholar 

  89. Pulkkinen HJ, Tiitu V, Valonen P, Jurvelin JS, Rieppo L, Töyräs J, et al. Repair of osteochondral defects with recombinant human type II collagen gel and autologous chondrocytes in rabbit. Osteoarthr Cartil. 2013;21(3):481–90.

    Article  CAS  Google Scholar 

  90. Lee CR, Grodzinsky AJ, Hsu HP, Spector M. Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model. J Orthop Res. 2003;21(2):272–81.

    Article  CAS  PubMed  Google Scholar 

  91. Kon E, Delcogliano M, Filardo G, Busacca M, Di Martino A, Marcacci M. Novel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trial. Am J Sports Med. 2011;39(6):1180–90.

    Article  PubMed  Google Scholar 

  92. Efe T, Theisen C, Fuchs-Winkelmann S, Stein T, Getgood A, Rominger MB, et al. Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. Knee Surgery, Sport Traumatol Arthrosc. 2012;20(10):1915–22.

    Article  Google Scholar 

  93. Tohyama H, Yasuda K, Minami A, Majima T, Iwasaki N, Muneta T, et al. Atelocollagen-associated autologous chondrocyte implantation for the repair of chondral defects of the knee: a prospective multicenter clinical trial in Japan. J Orthop Sci. 2009;14(5):579–88.

    Article  CAS  PubMed  Google Scholar 

  94. Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials. 2006;27(36):6064–82.

    Article  CAS  PubMed  Google Scholar 

  95. Zhang Q, Yan S, Li M. Silk fibroin based porous materials. Materials. 2009;2(4):2276–95.

    Article  CAS  PubMed Central  Google Scholar 

  96. Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilage repair. Progress in Polymer Science (Oxford). 2010;35(4):403–40.

    Article  CAS  Google Scholar 

  97. Chen CH, Liu JMJ, Chua CK, Chou SM, Shyu VBH, Chen JP. Cartilage tissue engineering with silk fibroin scaffolds fabricated by indirect additive manufacturing technology. Materials (Basel). 2014;7(3):2104–19.

    Article  CAS  Google Scholar 

  98. Servoli E, Maniglio D, Motta A, Predazzer R, Migliaresi C. Surface properties of silk fibroin films and their interaction with fibroblasts. Macromol Biosci. 2005;5(12):1175–83.

    Article  CAS  PubMed  Google Scholar 

  99. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004;25(7–8):1289–97.

    Article  CAS  PubMed  Google Scholar 

  100. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401–16.

    Article  CAS  PubMed  Google Scholar 

  101. Oegema TR, Carpenter RJ, Hofmeister F, Thompson RC. The interaction of the zone of calcified cartilage and subchondral bone in osteoarthritis. Microsc Res Tech. 1997;37(4):324–32.

    Article  PubMed  Google Scholar 

  102. Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, et al. Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng. 2004;88(3):379–91.

    Article  CAS  PubMed  Google Scholar 

  103. Märtson M, Viljanto J, Hurme T, Laippala P, Saukko P. Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials. 1999;20(21):1989–95.

    Article  PubMed  Google Scholar 

  104. Mohite BV, Patil SV. A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem. 2014;61(2):101–10.

    Article  CAS  PubMed  Google Scholar 

  105. Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F. Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose. 1998;5(3):187–200.

    Article  CAS  Google Scholar 

  106. De Castro Pita PC, Pinto FCM, De Melo Lira MM. De Assis Dutra Melo F, Ferreira LM, De Andrade Aguiar JL. Biocompatibility of the bacterial cellulose hydrogel in subcutaneous tissue of rabbits. Acta Cir Bras. 2015;30(4):296–300.

    Article  Google Scholar 

  107. Kim DY, Nishiyama Y, Kuga S. Surface acetylation of bacterial cellulose. Cellulose. 2002;9(3–4):361–7.

    Article  CAS  Google Scholar 

  108. Müller FA, Müller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R. Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials. 2006;27(21):3955–6.

    Article  PubMed  CAS  Google Scholar 

  109. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials. 2005;26(4):419–31.

    Article  CAS  PubMed  Google Scholar 

  110. Ando W, Tateishi K, Katakai D, Hart DA, Higuchi C, Nakata K, et al. In vitro generation of a scaffold-free tissue-engineered construct (TEC) derived from human synovial mesenchymal stem cells: biological and mechanical properties and further chondrogenic potential. Tissue Eng - Part A. 2008;14(12):2041–9.

    Article  CAS  PubMed  Google Scholar 

  111. Shimomura K, Yasui Y, Koizumi K, Chijimatsu R, Hart DA, Yonetani Y, et al. First-in-human pilot study of implantation of a scaffold-free tissue-engineered construct generated from autologous synovial mesenchymal stem cells for repair of knee chondral lesions. Am J Sports Med. 2018;46(10):2384–93.

    Article  PubMed  Google Scholar 

  112. Shimomura K, Moriguchi Y, Ando W, Nansai R, Fujie H, Hart DA, et al. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Tissue Eng - Part A. 2014;20(17–18):2291–304.

    Article  CAS  PubMed  Google Scholar 

  113. Temenoff JS, Steinbis ES, Mikos AG. Effect of drying history on swelling properties and cell attachment to oligo(poly(ethylene glycol) fumarate) hydrogels for guided tissue regeneration applications. J Biomater Sci Polym Ed. 2003;14(9):989–1004.

    Article  CAS  PubMed  Google Scholar 

  114. Roberts JJ, Bryant SJ. Comparison of photopolymerizable thiol-ene PEG and acrylate-based PEG hydrogels for cartilage development. Biomaterials. 2013;34(38):9969–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bryant SJ, Anseth KS. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J Biomed Mater Res - Part A. 2003;64(1):70–9.

    Article  CAS  Google Scholar 

  116. Gould ST, Anseth KS. Role of cell–matrix interactions on VIC phenotype and tissue deposition in 3D PEG hydrogels. J Tissue Eng Regen Med. 2016;10(10):E443–53.

    Article  CAS  PubMed  Google Scholar 

  117. Zhao X, Papadopoulos A, Ibusuki S, Bichara DA, Saris DB, Malda J, et al. Articular cartilage generation applying PEG-LA-DM/PEGDM copolymer hydrogels. BMC Musculoskelet Disord. 2016;17(1):245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Rakovsky A, Marbach D, Lotan N, Lanir Y. Poly(ethylene glycol)-based hydrogels as cartilage substitutes: synthesis and mechanical characteristics. J Appl Polym Sci. 2009;112(1):390–401.

    Article  CAS  Google Scholar 

  119. Liu SQ, Tian Q, Hedrick JL, Po Hui JH, Rachel Ee PL, Yang YY. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials. 2010;31(28):7298–307.

    Article  CAS  PubMed  Google Scholar 

  120. Rice MA, Anseth KS. Controlling cartilaginous matrix evolution in hydrogels with degradation triggered by exogenous addition of an enzyme. Tissue Eng. 2007;13(4):683–91.

    Article  CAS  PubMed  Google Scholar 

  121. Scholz B, Kinzelmann C, Benz K, Mollenhauer J, Wurst H, Schlosshauer B. Suppression of adverse angiogenesis in an albumin-based hydrogel for articular cartilage and intervertebral disc regeneration. Eur Cells Mater. 2010;20(24):2010–8.

    Google Scholar 

  122. Gandhi A, Paul A, Sen SO, Sen KK. Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian Journal of Pharmaceutical Sciences. 2015;10(2):99–107.

    Article  Google Scholar 

  123. Kim S, Healy KE. Synthesis and characterization of injectable poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with proteolytically degradable cross-links. Biomacromolecules. 2003;4(5):1214–23.

    Article  CAS  PubMed  Google Scholar 

  124. Zhang XZ, Xu XD, Cheng SX, Zhuo RX. Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels. Soft Matter. 2008;4(3):385–91.

    Article  CAS  PubMed  Google Scholar 

  125. Ibusuki S, Fujii Y, Iwamoto Y, Matsuda T. Tissue-engineered cartilage using an injectable and in situ gelable thermoresponsive gelatin: fabrication and in vitro performance. Tissue Eng. 2003;9(2):371–84.

    Article  CAS  PubMed  Google Scholar 

  126. Ibusuki S, Iwamoto Y, Matsuda T. System-engineered cartilage using poly(N-isopropylacrylamide)-grafted Gelatin as in situ-formable scaffold: in vivo performance. Tissue Eng. 2003;9(6):1133–42.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang J, Yun S, Du Y, Zannettino ACW, Zhang H. Fabrication of a cartilage patch by fusing hydrogel-derived cell aggregates onto electrospun film. Tissue Eng Part A. 2020; 1(ja).

    Google Scholar 

  128. Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho RM. Poly-lactic acid synthesis for application in biomedical devices - a review. Biotechnol Adv. 2012;30(1):321–8.

    Article  CAS  PubMed  Google Scholar 

  129. Capito RM, Spector M. Scaffold-based articular cartilage repair. IEEE Eng Med Biol Mag. 2003;22(5):42–50.

    Article  PubMed  Google Scholar 

  130. Bigg DM. Polylactide copolymers: effect of copolymer ratio and end capping on their properties. Adv Polym Technol. 2005;24(2):69–82.

    Article  CAS  Google Scholar 

  131. Zhao J, Han W, Tu M, Huan S, Zeng R, Wu H, et al. Preparation and properties of biomimetic porous nanofibrous poly(l-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique. Mater Sci Eng C. 2012;32(6):1496–502.

    Article  CAS  Google Scholar 

  132. Narayanan G, Vernekar VN, Kuyinu EL, Laurencin CT. Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv Drug Deliv Rev. 2016;107:247–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tanaka Y, Yamaoka H, Nishizawa S, Nagata S, Ogasawara T, Asawa Y, et al. The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage. Biomaterials. 2010;31(16):4506–16.

    Article  CAS  PubMed  Google Scholar 

  134. Chen JP, Li SF, Chiang YP. Bioactive collagen-grafted poly-L-lactic acid nanofibrous membrane for cartilage tissue engineering. In: Journal of Nanoscience and Nanotechnology. 2010;10(8):5393–8.

    CAS  Google Scholar 

  135. Chen JP, Su CH. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater. 2011;7(1):234–43.

    Article  CAS  PubMed  Google Scholar 

  136. Zhao H, Ma L, Gong Y, Gao C, Shen J. A polylactide/fibrin gel composite scaffold for cartilage tissue engineering: fabrication and an in vitro evaluation. J Mater Sci Mater Med. 2009;20(1):135–43.

    Article  CAS  PubMed  Google Scholar 

  137. Tubbs RK. Sequence distribution of partially hydrolyzed poly(vinyl acetate). J Polym Sci Part A-1 Polym Chem. 1966; 4(3):623–9.

    Google Scholar 

  138. Jones JI. Polyvinyl alcohol. Properties and applications. Edited by C. A. Finch. John Wiley, Chichester. 1973. Pp. xviii + 622. Price: £14.00. Br Polym J. 1973; 5(6):493–4.

    Google Scholar 

  139. Oka M, Ushio K, Kumar P, Ikeuchi K, Hyon SH, Nakamura T, et al. Development of artificial articular cartilage. Proc Inst Mech Eng Part H J Eng Med. 2000;214(1):59–68.

    Article  CAS  Google Scholar 

  140. Chaouat M, Le Visage C, Baille WE, Escoubet B, Chaubet F, Mateescu MA, et al. A novel cross-linked poly(vinyl alcohol) (PVA) for vascular grafts. Adv Funct Mater. 2008;18(19):2855–61.

    Article  CAS  Google Scholar 

  141. Dini L, Panzarini E, Miccoli MA, Miceli V, Protopapa C, Ramires PA. In vitro study of the interaction of polyalkilimide and polyvinyl alcohol hydrogels with cells. Tissue Cell. 2005;37(6):479–87.

    Article  CAS  PubMed  Google Scholar 

  142. Schmedlen RH, Masters KS, West JL. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials. 2002;23(22):4325–32.

    Article  CAS  PubMed  Google Scholar 

  143. Grad S, Kupcsik L, Gorna K, Gogolewski S, Alini M. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials. 2003;24(28):5163–71.

    Article  CAS  PubMed  Google Scholar 

  144. Bichara DA, Zhao X, Hwang NS, Bodugoz-Senturk H, Yaremchuk MJ, Randolph MA, et al. Porous poly(vinyl alcohol)-alginate gel hybrid construct for neocartilage formation using human nasoseptal cells. J Surg Res. 2010;163(2):331–6.

    Article  CAS  PubMed  Google Scholar 

  145. Mohan N, Nair PD, Tabata Y. Growth factor-mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi-IPN poly(vinyl alcohol)-poly(caprolactone) scaffolds. J Biomed Mater Res - Part A. 2010;94(1):146–59.

    Article  CAS  Google Scholar 

  146. M PC. Poly (−caprolactone) and its copolymers. In: R L, editor. Biodegradable polymers as drug delivery systems. New York, NY; 1990. p. 71–119.

    Google Scholar 

  147. Coombes AGA, Rizzi SC, Williamson M, Barralet JE, Downes S, Wallace WA. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials. 2004;25(2):315–25.

    Article  CAS  PubMed  Google Scholar 

  148. Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev. 2009;38(4):1139–51.

    Article  CAS  PubMed  Google Scholar 

  149. Wise JK, Yarin AL, Megaridis CM, Cho M. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng - Part A. 2009;15(4):913–21.

    Article  CAS  PubMed  Google Scholar 

  150. Temenoff JS, Mikos AG. Injectable biodegradable materials for orthopaedic tissue engineering. In: Polymer based systems on tissue engineering, replacement and regeneration. Dordrecht: Springer; 2002. p. 299–312.

    Chapter  Google Scholar 

  151. Gogolewski S, Pennings A. Biodegradable materials of polylactides, 4. Porous biomedical materials based on mixtures of polylactides and polyurethanes. Die Makromol Chemie, Rapid Commun. 1982;3(12):839–45.

    Article  CAS  Google Scholar 

  152. Werkmeister JA, Adhikari R, White JF, Tebb TA, Le TPT, Taing HC, et al. Biodegradable and injectable cure-on-demand polyurethane scaffolds for regeneration of articular cartilage. Acta Biomater. 2010;6(9):3471–81.

    Article  CAS  PubMed  Google Scholar 

  153. Gorna K, Gogolewski S. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. J Biomed Mater Res - Part A. 2003;67(3):813–27.

    Article  CAS  Google Scholar 

  154. Fisher JP, Holland TA, Dean D, Engel PS, Mikos AG. Synthesis and properties of photocross-linked poly(propylene fumarate) scaffolds. J Biomater Sci Polym Ed. 2001;12(6):673–87.

    Article  CAS  PubMed  Google Scholar 

  155. Timmer MD, Shin H, Horch RA, Ambrose CG, Mikos AG. In vitro cytotoxicity of injectable and biodegradable poly(propylene fumarate)-based networks: unreacted macromers, cross-linked networks, and degradation products. Biomacromolecules. 2003;4(4):1026–33.

    Article  CAS  PubMed  Google Scholar 

  156. Hedberg EL, Kroese-Deutman HC, Shih CK, Crowther RS, Carney DH, Mikos AG, et al. In vivo degradation of porous poly(propylene fumarate)/poly(DL-lactic-co- glycolic acid) composite scaffolds. Biomaterials. 2005;26(22):4616–23.

    Article  CAS  PubMed  Google Scholar 

  157. Peter SJ, Kim P, Yasko AW, Yaszemski MJ, Mikos AG. Crosslinking characteristics of an injectable poly(propylene fumarate)/β-tricalcium phosphate paste and mechanical properties of the crosslinked composite for use as a biodegradable bone cement. J Biomed Mater Res. 1999;44(3):314–21.

    Article  CAS  PubMed  Google Scholar 

  158. Peter SJ, Nolley JA, Widmer MS, Merwin JE, Yaszemski MJ, Yasko AW, et al. In vitro degradation of a poly(propylene fumarate)/β-tricalcium phosphate composite orthopaedic scaffold. Tissue Eng. 1997;3(2):207–15.

    Article  CAS  Google Scholar 

  159. Lee JW, Ahn GS, Kim DS, Cho DW. Development of nano- and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectron Eng. 2009;86(4–6):1465–7.

    Article  CAS  Google Scholar 

  160. Diciccio AM, Coates GW. Ring-opening copolymerization of maleic anhydride with epoxides: a chain-growth approach to unsaturated polyesters. J Am Chem Soc. 2011;133(28):10724–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norimasa Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jacob, G., Shimomura, K., Hart, D.A., Fujie, H., Nakamura, N. (2021). Mechanical and Biologic Properties of Articular Cartilage Repair Biomaterials. In: Koh, J., Zaffagnini, S., Kuroda, R., Longo, U.G., Amirouche, F. (eds) Orthopaedic Biomechanics in Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-81549-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81549-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81548-6

  • Online ISBN: 978-3-030-81549-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics