Skip to main content

Comparing Concepts of Quantum and Classical Neural Network Models for Image Classification Task

  • Conference paper
  • First Online:
Progress in Image Processing, Pattern Recognition and Communication Systems (CORES 2021, IP&C 2021, ACS 2021)

Abstract

While quantum architectures are still under development, when available, they will only be able to process quantum data when machine learning algorithms can only process numerical data. Therefore, in the issues of classification or regression, it is necessary to simulate and study quantum systems that will transfer the numerical input data to a quantum form and enable quantum computers to use the available methods of machine learning. This material includes the results of experiments on training and performance of a hybrid quantum-classical neural network developed for the problem of classification of handwritten digits from the MNIST data set. The comparative results of two models: classical and quantum neural networks of a similar number of training parameters, indicate that the quantum network, although its simulation is time-consuming, overcomes the classical network (it has better convergence and achieves higher training and testing accuracy).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/

  2. Broughton, M., et al.: Tensorflow quantum: A software framework for quantum machine learning. arXiv:2003.02989 (2020)

  3. Cirq Developers, Cirq, Zenodo (2020). https://doi.org/10.5281/zenodo.4064322

  4. Deutsch, D.E.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. London. A. Math. Phys. Sci. 400(1818), 97–117 (1985). https://doi.org/10.1098/rspa.1985.0070

    Article  MathSciNet  MATH  Google Scholar 

  5. Deutsch, D.E., Barenco, A., Ekert, A.: Universality in quantum computation. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 449(1937), 669–677 (1995). https://doi.org/10.1098/rspa.1995.0065

    Article  MathSciNet  MATH  Google Scholar 

  6. Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv:1802.06002 (2018)

  7. Fujisawa, T., Hayashi, T., Jung, S.W., Jeong, Y.H., Hirayama, Y.: Single-electron charge qubit in a double quantum dot. In: Ruggiero, B., Delsing, P., Granata, C., Pashkin, Y., Silvestrini, P. (eds.) Quantum Computing in Solid State Systems. Springer, New York, NY (2006). https://doi.org/10.1007/0-387-31143-2_34

  8. Gupta, S., Zia, R.: Quantum neural networks. J. Comput. Syst. Sci. 63(3), 355–383 (2001). https://doi.org/10.1006/jcss.2001.1769

    Article  MathSciNet  MATH  Google Scholar 

  9. Josephson, B.D.: The discovery of tunnelling supercurrents. Proc. IEEE 62(6), 838–841 (1974). https://doi.org/10.1109/PROC.1974.9524

    Article  Google Scholar 

  10. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011). https://doi.org/10.1007/s11128-010-0177-y

    Article  MathSciNet  MATH  Google Scholar 

  11. LeCun, Y., Cortes, C., Burges, C.: The MNIST database of handwritten digits. Courant Institute, NYU, Google Labs, New York, Microsoft Research, Redmond (2010). http://yann.lecun.com/exdb/mnist/

  12. Lucatto, B., Koda, D.S., Bechstedt, F., Marques, M., Teles, L.K.: Charge qubit in van der Waals heterostructures. Phys. Rev. B 100(12), 121406 (2019). https://doi.org/10.1103/PhysRevB.100.121406

    Article  Google Scholar 

  13. Morton, J.J., et al.: Solid-state quantum memory using the \(^{31}\)P nuclear spin. Nature 455(7216), 1085–1088 (2008). https://doi.org/10.1038/nature07295

    Article  Google Scholar 

  14. Mosakowski, J., Owen, E., Ferrus, T., Williams, D., Dean, M., Barnes, C.: An optimal single-electron charge qubit for solid-state double quantum dots. arXiv:1603.05112 (2016)

  15. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511976667

  16. Pla, J.J., et al.: A single-atom electron spin qubit in silicon. Nature 489(7417), 541–545 (2012). https://doi.org/10.1038/nature11449

    Article  Google Scholar 

  17. Potempa, R.: Simulation of quantum neural network with evaluation of its performance. Silesian University of Technology, Gliwice, Poland (2021)

    Google Scholar 

  18. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

    Article  Google Scholar 

  19. Riedl, S., Lettner, M., Vo, C., Baur, S., Rempe, G., Dürr, S.: Bose-Einstein condensate as a quantum memory for a photonic polarization qubit. Phys. Rev. A 85(2), 022318 (2012). https://doi.org/10.1103/PhysRevA.85.022318

  20. Zhou, Z.-Q., Lin, W.-B., Yang, M., Li, C.-F., Guo, G.-C.: Realization of reliable solid state quantum memory for photonic polarization qubit. Phys. Rev. Lett. 108(19), 190505 (2012). https://doi.org/10.1103/PhysRevLett.108.190505

Download references

Acknowledgements

The authors would like to thank the referees for their comments that helped to improve the presentation of this paper. This research is financed from the statutory activities of the Faculty of Automatic Control, Electronics and Computer Science of the Silesian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Potempa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Potempa, R., Porebski, S. (2022). Comparing Concepts of Quantum and Classical Neural Network Models for Image Classification Task. In: Choraś, M., Choraś, R.S., Kurzyński, M., Trajdos, P., Pejaś, J., Hyla, T. (eds) Progress in Image Processing, Pattern Recognition and Communication Systems. CORES IP&C ACS 2021 2021 2021. Lecture Notes in Networks and Systems, vol 255. Springer, Cham. https://doi.org/10.1007/978-3-030-81523-3_6

Download citation

Publish with us

Policies and ethics