Skip to main content

Management of Peripheral Arterial Calcification

  • Chapter
  • First Online:
Cardiovascular Calcification
  • 804 Accesses

Abstract

Vascular calcification (VC) is associated with a significant increase in cardiovascular morbidity and mortality. It can affect any segment of the peripheral arterial tree regardless of the size of the vessel. It is classified morphologically into intimal and medial calcification (Monckeberg’s medial sclerosis) according to the arterial wall layer affected. The intimal calcification is related mainly to the underlying atherosclerotic process and influenced by all its risk factors such as hypertension, hypercholesterolemia, smoking, obesity and sedentary life. On the other hand, the medial calcification (MC) is not related to atherosclerosis and not influenced by risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. McMillan GC. Historical review of research on atherosclerosis. Adv Exp Med Biol. 1995;369:1–6.

    Article  CAS  Google Scholar 

  2. Fuery MA, Liang L, Kaplan FS, Mohler ER 3rd. Vascular ossification: pathology, mechanisms, and clinical implications. Bone. 2018;109:28–34. https://doi.org/10.1016/j.bone.2017.07.006.

    Article  CAS  Google Scholar 

  3. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, Hiratzka LF, Murphy WRC, Olin JW, Puschett JB, Rosenfield KA, Sacks D, Stanley JC, Taylor LM Jr, White CJ, White J, White RA. ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society foe Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients with Peripheral Arterial Disease). Circulation. 2006;113:e463–654.

    Google Scholar 

  4. Rifkin DE, Ix JH, Wassel CL, Criqui MH, Allison MA. Renal artery calcification and mortality among clinically asymptomatic adults. J Am Coll Cardiol. 2012;60:1079–85.

    Article  Google Scholar 

  5. Smith ER, Hewitson TD, Holt SG. Diagnostic tests for vascular calcification. Adv Chronic Kidney Dis. 2019;26(6):445–63. https://doi.org/10.1053/j.ackd.2019.07.001.

    Article  Google Scholar 

  6. Disthabanchong S, Srisuwarn P. Mechanisms of vascular calcification in kidney disease. Adv Chronic Kidney Dis. 2019;26(6):417–26. https://doi.org/10.1053/j.ackd.2019.08.014.

    Article  Google Scholar 

  7. Karwowski W, Naumnik B, Szczepański M, Myśliwiec M. The mechanism of vascular calcification – a systematic review. Med Sci Monit. 2012;18(1):RA1–RA11. https://doi.org/10.12659/msm.882181.

    Article  CAS  Google Scholar 

  8. Bäck M, Aranyi T, Cancela ML, et al. Endogenous calcification inhibitors in the prevention of vascular calcification: a consensus statement from the COST action EuroSoftCalcNet. Front Cardiovasc Med. 2019;5:196. Published 2019 Jan 18. https://doi.org/10.3389/fcvm.2018.00196

  9. Lomashvili KA, Khawandi W, O’Neill WC. Reduced plasma pyrophosphate levels in hemodialysis patients. J Am Soc Nephrol. 2005;16:2495–500. https://doi.org/10.1681/ASN.2004080694.

    Article  CAS  Google Scholar 

  10. Dedinszki D, Szeri F, Kozak E, Pomozi V, Tokesi N, Mezei TR, et al. Oral administration of pyrophosphate inhibits connective tissue calcification. EMBO Mol Med. 2017;9:1463–70. https://doi.org/10.15252/emmm.201707532.

    Article  CAS  Google Scholar 

  11. Cancela ML, Laize V, Conceicao N. Matrix Gla protein and osteocalcin: from gene duplication to neofunctionalization. Arch Biochem Biophys. 2014;561:56–63. https://doi.org/10.1016/j.abb.2014.07.020.

    Article  CAS  Google Scholar 

  12. Zazzeroni L, Faggioli G, Pasquinelli G. Mechanisms of arterial calcification: the role of matrix vesicles. Eur J Vasc Endovasc Surg. 2018;55(3):425–32. https://doi.org/10.1016/j.ejvs.2017.12.009.

    Article  Google Scholar 

  13. Schurgers LJ, Barreto DV, Barreto FC, Liabeuf S, Renard C, Magdeleyns EJ, et al. The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary report. Clin J Am Soc Nephrol. 2010;5:568–75. https://doi.org/10.2215/CJN.07081009.

    Article  CAS  Google Scholar 

  14. van den Heuvel EG, van Schoor NM, Lips P, Magdeleyns EJ, Deeg DJ, Vermeer C, et al. Circulating uncarboxylated matrix Gla protein, a marker of vitamin K status, as a risk factor of cardiovascular disease. Maturitas. 2014;77:137–41. https://doi.org/10.1016/j.maturitas.2013.10.008 (P349).

  15. Heiss A, DuChesne A, Denecke B, Grotzinger J, Yamamoto K, Renne T, et al. Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles. J Biol Chem. 2003;278:13333–41. https://doi.org/10.1074/jbc.M210868200.

    Article  CAS  Google Scholar 

  16. Ketteler M, Bongartz P, Westenfeld R, Wildberger JE, Mahnken AH, Bohm R, et al. Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet. 2003;361:827–33. https://doi.org/10.1016/S0140-6736(03)12710-9.

    Article  CAS  Google Scholar 

  17. Kitagawa M, Sugiyama H, Morinaga H, Inoue T, Takiue K, Ogawa A, et al. A decreased level of serum soluble Klotho is an independent biomarker associated with arterial stiffness in patients with chronic kidney disease. PLoS One. 2013;8:e56695. https://doi.org/10.1371/journal.pone.0056695.

    Article  CAS  Google Scholar 

  18. Martin TJ. Sims NA; RANKL/OPG. Critical role in bone physiology. Rev Endocr Metab Disord. 2015;16:131–9.

    Article  CAS  Google Scholar 

  19. Gungor O, Kocyigit I, Yilmaz MI, Sezer S. Role of vascular calcification inhibitors in preventing vascular dysfunction and mortality in hemodialysis patients. Semin Dial. 2018;31(1):72–81. https://doi.org/10.1111/sdi.12616.

    Article  Google Scholar 

  20. Singh M, Ananthula S, Milhorn DM, Krishnaswamy G, Singh K. Osteopontin: a novel inflammatory mediator of cardiovascular disease. Front Biosci. 2007;12:214–21.

    Article  CAS  Google Scholar 

  21. Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation. 2008;117:2938e48.

    Article  Google Scholar 

  22. Yahagi K, Kolodgie FD, Lutter C, et al. Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arterioscler Thromb Vasc Biol. 2017;37(2):191–204. https://doi.org/10.1161/ATVBAHA.116.306256.

    Article  CAS  Google Scholar 

  23. Tintut Y, Patel J, Parhami F, Demer LL. Tumor necrosis factor-alpha promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation. 2000;102:2636–42.

    Article  CAS  Google Scholar 

  24. Demer LL, Tintut Y. Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol. 2014;34:715–23.

    Article  CAS  Google Scholar 

  25. Reynolds JL, Skepper JN, McNair R, Kasama T, Gupta K, Weissberg PL, Jahnen-Dechent W, Shanahan CM. Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol. 2005;16:2920–30.

    Article  CAS  Google Scholar 

  26. Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 2004;24:1161–70.

    Article  CAS  Google Scholar 

  27. Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation. 2008;117(22):2938–48.

    Article  Google Scholar 

  28. Giddens DP, Zarins CK, Glagov S. Response of arteries to near-wall fluid dynamic behavior. Appl Mech Rev. 1990;43:S96.

    Article  Google Scholar 

  29. Lyon RT, Runyon-Hass A, Davis HR, et al. Protection from atherosclerotic lesion formation by inhibition of artery wall motion. J Vasc Surg. 1987;5:59.

    Article  CAS  Google Scholar 

  30. Mönckeberg JG. Uber die reine Mediaverkalkung der Extremit¨atenarterien und ihr Verhalten zur Arteriosklerose. Virchows Arch Pathol Anat. 1903;171:141–67. https://doi.org/10.1007/BF01926946.

    Article  Google Scholar 

  31. Aghagolzadeh P, Bachtler M, Bijarnia R, et al. Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-alpha. Atherosclerosis. 2016;251:404–14.

    Article  CAS  Google Scholar 

  32. Shao JS, Cai J, Towler DA. Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler Thromb Vasc Biol. 2006;26(7):1423–30. https://doi.org/10.1161/01.ATV.0000220441.42041.20.

    Article  CAS  Google Scholar 

  33. Okuno S, Iida O, Shiraki T, et al. Impact of calcification on clinical outcomes after endovascular therapy for superficial femoral artery disease: assessment using the peripheral artery calcification scoring system. J Endovasc Ther. 2016;23(5):731–7. https://doi.org/10.1177/1526602816656612.

    Article  Google Scholar 

  34. Pérez-Hernández N, Aptilon-Duque G, Blachman-Braun R, et al. Vascular calcification: current genetics underlying this complex phenomenon. Chin Med J. 2017;130(9):1113–21. https://doi.org/10.4103/0366-6999.204931.

    Article  CAS  Google Scholar 

  35. Dhaliwal G, Mukherjee D. Peripheral arterial disease: epidemiology, natural history, diagnosis and treatment. Int J Angiol. 2007;16:36–44.

    Article  Google Scholar 

  36. Eiberg JP, Grønvall Rasmussen JB, Hansen MA, Schroeder TV. Duplex ultrasound scanning of peripheral arterial disease of the lower limb. Eur J Vasc Endovasc Surg. 2010;40:507–12.

    Article  CAS  Google Scholar 

  37. Wyers MC, Fillinger MF, Schermerhorn ML, et al. Endovascular repair of abdominal aortic aneurysm without preoperative arteriography. J Vasc Surg. 2003;38:730–8.

    Article  Google Scholar 

  38. Wang Y, Osborne MT, Tung B, Li M, Li Y. Imaging cardiovascular calcification. J Am Heart Assoc. 2018;7(13):e008564.

    Article  CAS  Google Scholar 

  39. Pecoraro F, Bracale UM, Farina A, et al. Single-center experience and preliminary results of intravascular ultrasound in endovascular aneurysm repair. Ann Vasc Surg. 2019;56:209–15. https://doi.org/10.1016/j.avsg.2018.09.016.

    Article  Google Scholar 

  40. Farooq MU, Khasnis A, Majid A, Kassab MY. The role of optical coherence tomography in vascular medicine. Vasc Med. 2009;14(1):63–71. https://doi.org/10.1177/1358863X08095153.

    Article  Google Scholar 

  41. Bouma BE, Tearney, Yabushita H, et al. Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart. 2003;89:317.

    Article  CAS  Google Scholar 

  42. Jamie G. QoF. Quality and Outcomes Framework data for the UK, 2006.

    Google Scholar 

  43. Elhadd TA, Robb R, Jung RT, Stonebridge PA, Belch JJF. Pilot study of prevalence of asymptomatic peripheral arterial occlusive disease in patients with diabetes attending a hospital clinic. Pract Diabetes Int. 1999;16:163–6.

    Article  Google Scholar 

  44. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, CreagerMA OJW, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286:1317–24.

    Article  CAS  Google Scholar 

  45. Marso SP, Hiatt WR. Peripheral arterial disease in patients with diabetes. J Am Coll Cardiol. 2006;47:921–9.

    Article  Google Scholar 

  46. Erbel R, Delaney JA, Lehmann N, et al. Multi-ethnic Study of Atherosclerosis; Investigator Group of the Heinz Nixdorf Recall Study. Signs of subclinical coronary atherosclerosis in relation to risk factor distribution in the Multi-Ethnic Study of Atherosclerosis (MESA) and the Heinz Nixdorf Recall Study (HNR). Eur Heart J. 2008;29:2782–91.

    Article  Google Scholar 

  47. Edmonds ME, Shanahan C, Petrova NL. The diabetic foot syndrome. In: Piaggesi A, Apelqvist J, editors. Frontiers in diabetes, vol. 26. Basel: Karger; 2018. p. 60–6.

    Google Scholar 

  48. Stacey RB, Bertoni AG, Eng J, Bluemke DA, Hundley WG, Herrington D. Modification of the effect of glycemic status on aortic distensibility by age in the Multi-Ethnic Study of Atherosclerosis. Hypertension. 2010;55:26–32.

    Article  CAS  Google Scholar 

  49. Graziani L, Silvestro A, Bertone V, Manara E, Andreini R, Sigala A, et al. Vascular involvement in diabetic subjects with ischemic foot ulcer: a new morphologic categorization of disease severity. Eur J Vasc Endovasc Surg. 2007;33:453–60.

    Article  CAS  Google Scholar 

  50. Faglia E. Characteristics of peripheral arterial disease and its relevance to the diabetic population. Int J Low Extrem Wounds. 2011;10:152–66.

    Article  Google Scholar 

  51. Edmonds M. Vascular disease in the lower limb in type 1 diabetes. Cardiovasc Endocrinol Metab. 2019;8(1):39–46. Published 2019 Feb 13. https://doi.org/10.1097/XCE.0000000000000168.

  52. Bertoni AG, Kramer H, Watson K, Post WS. Diabetes and clinical and subclinical CVD. Glob Heart. 2016;11(3):337–42. https://doi.org/10.1016/j.gheart.2016.07.005.

    Article  Google Scholar 

  53. De Angelis M, Scrucca L, Leandri M, et al. Prevalence of carotid stenosis in type 2 diabetic patients asymptomatic for cerebrovascular disease. Diabetes Nutr Metab. 2003;16:48–55.

    Google Scholar 

  54. Sarwar N, Gao P, Seshasai SR, et al. for the Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22.

    Article  CAS  Google Scholar 

  55. Siracuse JJ, Chaikof EL. The pathogenesis of diabetic atherosclerosis. In: Shrikhande GV, McKinsey JF, editors. Diabetes and peripheral vascular disease: diagnosis and management Contemporary diabetes. New York: Springer; 2012. p. 13–26.

    Chapter  Google Scholar 

  56. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  CAS  Google Scholar 

  57. Lehto S, Niskanen L, Suhonen M, Ronnemaa T, Laakso M. Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler Thromb Vasc Biol. 1996;16:978–83.

    Article  CAS  Google Scholar 

  58. Amann K. Media calcification and intima calcification are distinct entities in chronic kidney disease. Clin J Am Soc Nephrol. 2008;3:1599–605.

    Article  Google Scholar 

  59. David Smith C, Gavin Bilmen J, Iqbal S, Robey S, Pereira M. Medial artery calcification as an indicator of diabetic peripheral vascular disease. Foot Ankle Int 2008;29(2):185–190. https://doi.org/10.3113/FAI.2008.0185.

  60. Forst T, Pfutzner A, Kann P, et al. Association between diabeticautonomic-C-fibre-neuropathy and medial wall calcification and the significance in the outcome of trophic foot lesions. Exp Clin Endocrinol Diabetes. 1995;103:94–8.

    Article  CAS  Google Scholar 

  61. Meema HE, Oreopoulos DG, Rapoport A. Serum magnesium level and arterial calcification in end-stage renal disease. Kidney Int. 1987;32:388–94.

    Article  CAS  Google Scholar 

  62. Edmonds M. Medial arterial calcification and diabetes mellitus. Z Kardiol. 2000;89(Suppl 2):101–4.

    Article  Google Scholar 

  63. Ferrier TM, Ferner TM. Radiologically demonstrable arterial calcification in diabetes mellitus. Australas Ann Med. 1964;13:222–8.

    Article  CAS  Google Scholar 

  64. Carter RE, Lackland DT, Cleary PA, Yim E, Lopes-Virella MF, Gilbert GE, et al. Intensive treatment of diabetes is associated with a reduced rate of peripheral arterial calcification in the diabetes control and complications trial. Diabetes Care. 2007;30:2646–8.

    Article  Google Scholar 

  65. Lundbaek K. Diabetic angiopathy. A new concept of pathogenesis (author’s transl) [Article in German]. MMW Munch Med Wochenschr. 1977;119:647–54.

    CAS  Google Scholar 

  66. Ferraresi R, Mauri G, Losurdo F, Troisi N, Brancaccio D, Caravaggi C, et al. BAD transmission and SAD distribution: a new scenario for critical limb ischemia. J Cardiovasc Surg. 2018;59:655–64.

    Article  Google Scholar 

  67. Lowry D, Saeed M, Narendran P, Tiwari A. A review of distribution of atherosclerosis in the lower limb arteries of patients with diabetes mellitus and peripheral vascular disease. Vasc Endovasc Surg. 2018;52:535–42.

    Article  Google Scholar 

  68. Everhart JE, Pettitt DJ, Knowler WC, Rose FA, Bennett PH. Medial arterial calcification and its association with mortality and complications of diabetes. Diabetologia. 1988;31:16–23.

    Article  CAS  Google Scholar 

  69. US Renal Data System. 2017 USRDS annual data report: epidemiology of kidney disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2017. http://www.usrds.org/2017/view/v1_04.aspx. Accessed December 15, 2019.

  70. Gregg LP, Hedayati SS. Management of traditional cardiovascular risk factors in CKD: what are the data? Am J Kidney Dis. 2018;72:728–44. https://doi.org/10.1053/j.ajkd.2017.12.007.

    Article  Google Scholar 

  71. Gregg LP, Adams-Huet B, Li X, Colbert G, Jain N, de Lemos JA, Hedayati SS. Effect modification of chronic kidney disease on the association of circulating and imaging cardiac biomarkers with outcomes. J Am Heart Assoc. 2017;6:e005235. https://doi.org/10.1161/JAHA.116.005235.

    Article  Google Scholar 

  72. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, Wang Y, Chung J, Emerick A, Greaser L, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 2000;342:1478–83. https://doi.org/10.1056/NEJM200005183422003.

    Article  CAS  Google Scholar 

  73. Wada K, Wada Y. Evaluation of aortic calcification with lanthanum carbonate vs. calcium-based phosphate binders in maintenance hemodialysis patients with type 2 diabetes mellitus: an open-label randomized controlled trial. Ther Apher Dial. 2014;18:353–60. https://doi.org/10.1111/1744-9987.12153.

    Article  CAS  Google Scholar 

  74. Raggi P, Chertow GM, Torres PU, Csiky B, Naso A, Nossuli K, Moustafa M, Goodman WG, Lopez N, Downey G, et al. ADVANCE Study Group. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dial Transplant 2011;26:1327–1339. https://doi.org/10.1093/ndt/gfq725.

  75. Zoccali C, London G. Con: vascular calcification is a surrogate marker, but not the cause of ongoing vascular disease, and it is not a treatment target in chronic kidney disease. Nephrol Dial Transplant. 2015;30:352–7. https://doi.org/10.1093/ndt/gfv021.

    Article  CAS  Google Scholar 

  76. Mathew RO, Bangalore S, Lavelle MP, Pellikka PA, Sidhu MS, Boden WE, Asif A. Diagnosis and management of atherosclerotic cardiovascular disease in chronic kidney disease: a review. Kidney Int. 2017;91:797–807. https://doi.org/10.1016/j.kint.2016.09.049.

    Article  Google Scholar 

  77. Rocha-Singh KJ, Zeller T, Jaff MR. Peripheral arterial calcification: prevalence, mechanism, detection, and clinical implications. Catheter Cardiovasc Interv. 2014;83(6):E212–20. https://doi.org/10.1002/ccd.25387.

    Article  Google Scholar 

  78. Stabley JN, Towler DA. Arterial calcification in diabetes mellitus: preclinical models and translational implications. Arterioscler Thromb Vasc Biol. 2017;37(2):205–17. https://doi.org/10.1161/ATVBAHA.116.306258.

    Article  CAS  Google Scholar 

  79. Lees JS, Chapman FA, Witham MD, Jardine AG, Mark PB. Vitamin K status, supplementation and vascular disease: a systematic review and meta-analysis. Heart. 2019;105:938–45.

    CAS  Google Scholar 

  80. Karger AB, Steffen BT, Nomura SO, et al. Association between homocysteine and vascular calcification incidence, prevalence, and progression in the MESA Cohort. J Am Heart Assoc. 2020;9(3):e013934. https://doi.org/10.1161/JAHA.119.013934.

    Article  Google Scholar 

  81. Nicoll R, Henein M. Extensive coronary calcification: a clinically unrecognised condition. Curr Vasc Pharmacol. 2010;8(5):701–5. https://doi.org/10.2174/157016110792007003.

    Article  CAS  Google Scholar 

  82. Vossen LM, Kroon AA, Schurgers LJ, de Leeuw PW. Pharmacological and nutritional modulation of vascular calcification. Nutrients. 2019;12(1):100. Published 2019 Dec 30. https://doi.org/10.3390/nu12010100

  83. Henein M, Nicoll R. Atherosclerosis and extensive arterial calcification: the same condition? Int J Cardiol. 2010;141(1):1–2. https://doi.org/10.1016/j.ijcard.2009.10.005.

    Article  Google Scholar 

  84. Kovesdy CP, Lu JL, Malakauskas SM, Andress DL, Kalatar-Zadeh K, Ahmadzadeh S. Paricalcitol versus ergocalciferol for secondary hyperparathyroidism in CKD stages 3 and 4: a randomized controlled trial. Am J Kidney Dis 2012;59:58–66.

    Google Scholar 

  85. Raggi P, Chertow GM, Torres PU, Csiky B, Naso A, Nossuli K, Moustafa M, Goodman WG, Lopez N, Downey G, Dehmel B, Floege J, for the ADVANCE study group. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dial Transplant. 2011;26:1327–39.

    Article  CAS  Google Scholar 

  86. Cunningham J, Danese M, Olson K, Klassen P, Chertow GM. Effects of the calcimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int. 2005;68:1793–800.

    Article  CAS  Google Scholar 

  87. Olin JW, White CJ, Armstrong EJ, Kadian-Dodov D, Hiatt WR. Peripheral artery disease: evolving role of exercise, medical therapy, and endovascular options. J Am Coll Cardiol. 2016;67(11):1338–57. https://doi.org/10.1016/j.jacc.2015.12.049.

    Article  Google Scholar 

  88. Goodney PP, Beck AW, Nagle J, Welch HG, Zwolak RM. National trends in lower extremity bypass surgery, endovascular interventions, and major amputations. J Vasc Surg. 2009;50(1):54–60.

    Article  Google Scholar 

  89. Bishu K, Armstrong EJ. Supera self-expanding stents for endovascular treatment of femoropopliteal disease: a review of the clinical evidence. Vasc Health Risk Manag. 2015;11:387–95.

    Google Scholar 

  90. Schillinger M, Minar E. Percutaneous treatment of peripheral artery disease: novel techniques. Circulation. 2012;126(20):2433–40.

    Article  Google Scholar 

  91. Fanelli F, Cannavale A, Gazzetti M, et al. Calcium burden assessment and impact on drug-eluting balloons in peripheral arterial disease. Cardiovasc Intervent Radiol. 2014;37(4):898–907.

    Article  CAS  Google Scholar 

  92. Mattesini A, Di Mario C. Calcium: a predictor of interventional treatment failure across all fields of cardiovascular medicine. Int J Cardiol. 2017;231:97–8.

    Article  Google Scholar 

  93. van der Lugt A, Gussenhoven EJ, Mali WPTM, et al. Effect of balloon angioplasty in femoropopliteal arteries assessed by intravascular ultrasound. Eur J Vasc Endovasc Surg. 1997;13:549–56.

    Article  Google Scholar 

  94. Fujihara M, Takahara M, Sasaki S, et al. Angiographic dissection patterns and patency outcomes after balloon angioplasty for superficial femoral artery disease. J Endovasc Ther. 2017;24:367–75.

    Article  Google Scholar 

  95. Bosiers M, Scheinert D, Hendriks JMH, et al. Results from the Tack Optimized Balloon Angioplasty (TOBA) study demonstrate the benefits of minimal metal implants for dissection repair after angioplasty. J Vasc Surg. 2016;64:109–16.

    Article  Google Scholar 

  96. Huber MS, Mooney JF, Madison J, Mooney MR. Use of a morphologic classification to predict clinical outcome after dissection from coronary angioplasty. Am J Cardiol. 1991;68:467–71.

    Article  CAS  Google Scholar 

  97. Rogers JH, Lasala JM. Coronary artery dissection and perforation complicating percutaneous coronary intervention. J Invasive Cardiol. 2004;16:493–9.

    Google Scholar 

  98. Kobayashi N, Hirano K, Yamawaki M, et al. Simple classification and clinical outcomes of angiographic dissection after balloon angioplasty for femoropopliteal disease. J Vasc Surg. 2017;67:1151–8.

    Article  Google Scholar 

  99. Brodmann M, Wissgott C, Brechtel K, et al. Optimized drug-coated balloon angioplasty of the superficial femoral and proximal popliteal arteries using the Tack Endovascular System: TOBA III 12-month results [published online ahead of print, 2020 May 12]. J Vasc Surg. 2020; S0741–5214(20)30330-X. https://doi.org/10.1016/j.jvs.2020.01.078

  100. Björkman P, Weselius EM, Kokkonen T, Rauta V, Albäck A, Venermo M. Drug-coated versus plain balloon angioplasty in arteriovenous fistulas: a randomized, controlled study with 1-year follow-up (The Drecorest Ii-Study). Scand J Surg. 2019;108(1):61–6. https://doi.org/10.1177/1457496918798206.

    Article  Google Scholar 

  101. Huizing E, Kum S, Adams G, Ferraresi R, de Vries JP, Ünlü Ç. High-pressure, noncompliant balloon angioplasty for long and calcified infrapopliteal and inframalleolar lesions is feasible [published online ahead of print, 2020 May 13]. Int Angiol. 2020;10.23736/S0392-9590.20.04375-8. https://doi.org/10.23736/S0392-9590.20.04375-8

  102. Barath P, Fishbein MC, Vari S, Forrester JS. Cutting balloon: a novel approach to percutaneous angioplasty. Am J Cardiol. 1991;68:1249–52.

    Article  CAS  Google Scholar 

  103. Iezzi R, Posa A, Santoro M, et al. Cutting balloon angioplasty in the treatment of short infrapopliteal bifurcation disease. J Endovasc Ther. 2015;22(4):485–92. https://doi.org/10.1177/1526602815594250.

    Article  Google Scholar 

  104. Treitl M, Reiser MF, Treitl KM. Stentgestützte Rekanalisation der femoropoplitealen arteriellen Verschlusskrankheit. Einfluss des Stentdesigns auf die Offenheitsrate [Stent-assisted recanalization of femoropopliteal arterial occlusive disease. Influence of stent design on patency rates]. Radiologe. 2016;56(3):233–9. https://doi.org/10.1007/s00117-016-0077-y.

    Article  CAS  Google Scholar 

  105. Kondapalli A, Jeon-Slaughter H, Lu H, Xu H, Khalili H, Prasad A, et al. Comparative assessment of patient outcomes with intraluminal or subintimal crossing of infrainguinal peripheral artery chronic total occlusions. Vasc Med. 2018;23(1):39–45.

    Article  Google Scholar 

  106. Chun JY, Markose G, Bolia A. Developments in subintimal angioplasty in the infrainguinal segment. J Cardiovasc Surg. 2010;51(2):213–21.

    Google Scholar 

  107. Lipsitz EC, Ohki T, Veith FJ, Suggs WD, Wain RA, Cynamon J, et al. Does subintimal angioplasty have a role in the treatment of severe lower extremity ischemia? J Vasc Surg. 2003;37(2):386–91.

    Article  Google Scholar 

  108. Tatli E, Buturak A, Kayapınar O, Dogan E, Alkan M, Gunduz Y. Subintimal angioplasty and stenting in chronic total femoropopliteal artery occlusions: early- and mid-term outcomes. Cardiol J. 2015;22(1):115–20.

    Article  Google Scholar 

  109. Gandini R, Fabiano S, Spano S, Volpi T, Morosetti D, Chiaravalloti A, et al. Randomized control study of the outback LTD reentry catheter versus manual reentry for the treatment of chronic total occlusions in the superficial femoral artery. Catheter Cardiovasc Interv. 2013;82(3):485–92.

    Article  Google Scholar 

  110. Ramjas G, Thurley P, Habib S. The use of a re-entry catheter in recanalization of chronic inflow occlusions of the common iliac artery. Cardiovasc Intervent Radiol. 2008 May;31(3):650–4.

    Article  Google Scholar 

  111. Kokkinidis DG, Katsaros I, Jonnalagadda AK, et al. Use, safety and effectiveness of subintimal angioplasty and re-entry devices for the treatment of femoropopliteal chronic total occlusions: a systematic review of 87 studies and 4,665 patients. Cardiovasc Revasc Med. 2020;21(1):34–45. https://doi.org/10.1016/j.carrev.2019.03.016.

    Article  Google Scholar 

  112. Shin SH, Baril D, Chaer R, Rhee R, Makaroun M, Marone L. Limitations of the Outback LTD re-entry device in femoropopliteal chronic total occlusions. J Vasc Surg. 2011;53(5):1260–4.

    Article  Google Scholar 

  113. Jacobs DL, Motaganahalli RL, Cox DE, Wittgen CM, Peterson GJ. True lumen re-entry devices facilitate subintimal angioplasty and stenting of total chronic occlusions: initial report. J Vasc Surg. 2006;43(6):1291–6.

    Article  Google Scholar 

  114. Kokkinidis DG, Alvandi B, Cotter R, et al. Long-term outcomes after re-entry device use for recanalization of common iliac artery chronic total occlusions. Catheter Cardiovasc Interv. 2018;92:526–32.

    Article  Google Scholar 

  115. Feldman DN, Armstrong EJ, Aronow HD, et al. SCAI consensus guidelines for device selection in femoral-popliteal arterial interventions. Catheter Cardiovasc Interv. 2018;92(1):124–40. https://doi.org/10.1002/ccd.27635.

    Article  Google Scholar 

  116. Khalili H, Jeon-Slaughter H, Armstrong EJ, et al. Atherectomy in below-the-knee endovascular interventions: one-year outcomes from the XLPAD registry. Catheter Cardiovasc Interv. 2019;93(3):488–93. https://doi.org/10.1002/ccd.27897.

    Article  Google Scholar 

  117. Roberts D, Niazi K, Miller W, et al. Effective endovascular treatment of calcified femoropopliteal disease with directional atherectomy and distal embolic protection: final results of the DEFINITIVE Ca++ trial. Catheter Cardiovasc Interv. 2014;84(2):236–44. https://doi.org/10.1002/ccd.25384.

    Article  Google Scholar 

  118. Zeller T, Langhoff R, Rocha-Singh KJ, et al. Directional atherectomy followed by a paclitaxel-coated balloon to inhibit restenosis and maintain vessel patency: twelve-month results of the DEFINITIVE AR Study. Circ Cardiovasc Interv. 2017;10(9):e004848. https://doi.org/10.1161/CIRCINTERVENTIONS.116.004848.

    Article  Google Scholar 

  119. Khan AA, Panchal HB, Zaidi SIM, et al. Safety and efficacy of radial versus femoral access for rotational Atherectomy: a systematic review and meta-analysis. Cardiovasc Revasc Med. 2019;20(3):241–7. https://doi.org/10.1016/j.carrev.2018.06.006.

    Article  Google Scholar 

  120. Shlofmitz E, Jeremias A, Shlofmitz R, Ali ZA. Lesion preparation with orbital atherectomy. Interv Cardiol. 2019;14(3):169–173. Published 2019 Nov 18. https://doi.org/10.15420/icr.2019.20.R1

  121. Goel S, Pasam RT, Chava S, et al. Orbital atherectomy versus rotational atherectomy: a systematic review and meta-analysis. Int J Cardiol. 2020;303:16–21. https://doi.org/10.1016/j.ijcard.2019.12.037.

    Article  Google Scholar 

  122. Dippel EJ, Makam P, Kovach R, et al. Randomized controlled study of excimer laser atherectomy for treatment of femoropopliteal in-stent restenosis: initial results from the EXCITE ISR trial (EXCImer Laser Randomized Controlled Study for Treatment of FemoropopliTEal In-Stent Restenosis). JACC Cardiovasc Interv. 2015;8(1 Pt A):92–101. https://doi.org/10.1016/j.jcin.2014.09.009

  123. Shockwave Medical Inc. Clinical Evidence: PAD II. https:// shockwavemedical.com/clinicians/international/peripheral/ clinical-evidence/pad-ii. Accessed July 12, 2018.

  124. Khan S, Li B, Salata K, et al. The current status of lithoplasty in vascular calcifications: a systematic review. Surg Innov. 2019;26(5):588–98. https://doi.org/10.1177/1553350619848557.

    Article  Google Scholar 

  125. Chaikof EL, Dalman RL, Eskandar MK, et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg. 2018;67:2–77.

    Article  Google Scholar 

  126. Belvroy VM, Houben IB, Trimarchi S, Patel HJ, Moll FL, Van Herwaarden JA. Identifying and addressing the limitations of EVAR technology. Expert Rev Med Devices. 2018;15(8):541–54. https://doi.org/10.1080/17434440.2018.1505496.

    Article  CAS  Google Scholar 

  127. Price LZ, Faries PL, McKinsey JF, et al. The epidemiology, pathophysiology, and novel treatment of calcific arterial disease. Surg Technol Int. 2019;34:351–8.

    Google Scholar 

  128. Vatakencherry G, Molloy C, Sheth N, Liao M, Lam CK. Percutaneous access planning, techniques and considerations for endovascular aortic repair (EVAR). Cardiovasc Diagn Ther. 2018;8(Suppl 1):S184–90. https://doi.org/10.21037/cdt.2018.03.06.

    Article  Google Scholar 

  129. Elsherif M, Tawfick W, Elsharkawi M, Campell R, Hynes N, Sultan S. Common femoral artery endarterectomy in the age of endovascular therapy. Vascular. 2018;26(6):581–90. https://doi.org/10.1177/1708538118772682.

    Article  Google Scholar 

  130. Premaratne S, Newman J, Hobbs S, Garnham A, Wall M. Meta-analysis of direct surgical versus endovascular revascularization for aortoiliac occlusive disease. J Vasc Surg. 2020;72(2):726–37. https://doi.org/10.1016/j.jvs.2019.12.035.

    Article  Google Scholar 

  131. Veith FJ, Sanchez LA, Ohki T. Technique for obtaining proximal intraluminal control when arteries are inaccessible or unclampable because of disease or calcification. J Vasc Surg. 1998;27(3):582–6. https://doi.org/10.1016/s0741-5214(98)70338-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy R. Moawad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moawad, M.R. (2022). Management of Peripheral Arterial Calcification. In: Henein, M. (eds) Cardiovascular Calcification. Springer, Cham. https://doi.org/10.1007/978-3-030-81515-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81515-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81514-1

  • Online ISBN: 978-3-030-81515-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics