Skip to main content

Second-Order Finite Automata: Expressive Power and Simple Proofs Using Automatic Structures

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12811))

Included in the following conference series:

Abstract

Second-order finite automata, introduced recently by Andrade de Melo and de Oliveira Oliveira, represent classes of languages. Since their semantics is defined by a synchronized rational relation, they can be studied using the theory of automatic structures. We exploit this connection to uniformly reprove and strengthen known and new results regarding closure and decidability properties concerning these automata. We then proceed to characterize their expressive power in terms of automatic classes of languages studied by Jain, Luo, and Stephan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Melo, A.A., de Oliveira Oliveira, M.: Second-order finite automata. In: Fernau, H. (ed.) CSR 2020. LNCS, vol. 12159, pp. 46–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50026-9_4

    Chapter  Google Scholar 

  2. Bárány, V., Kaiser, Ł., Rubin, S.: Cardinality and counting quantifiers on omega-automatic structures. In: STACS 2008, pp. 385–396. IFIB Schloss Dagstuhl (2008)

    Google Scholar 

  3. Blumensath, A.: Automatic structures. Diplomarbeit, RWTH Aachen (1999)

    Google Scholar 

  4. Blumensath, A., Grädel, E.: Automatic structures. In: LICS 2000, pp. 51–62. IEEE Computer Society Press (2000)

    Google Scholar 

  5. Carayol, A., Löding, C.: MSO on the infinite binary tree: choice and order. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 161–176. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74915-8_15

    Chapter  Google Scholar 

  6. Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite words. Theor. Comput. Sci. 108, 45–82 (1993)

    Article  MathSciNet  Google Scholar 

  7. Hodgson, B.: On direct products of automaton decidable theories. Theor. Comput. Sci. 19, 331–335 (1982)

    Article  MathSciNet  Google Scholar 

  8. Jain, S., Luo, Q., Stephan, F.: Learnability of automatic classes. J. Comput. Syst. Sci. 78(6), 1910–1927 (2012)

    Article  MathSciNet  Google Scholar 

  9. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60178-3_93

    Chapter  Google Scholar 

  10. Kuske, D.: Is Ramsey’s theorem \(\omega \)-automatic? In: STACS 2010, vol. 5, pp. 537–548. Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2010)

    Google Scholar 

  11. Kuske, D.: Where automatic structures benefit from weighted automata. In: Kuich, W., Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020, pp. 257–271. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24897-9_12

    Chapter  Google Scholar 

  12. Kuske, D., Liu, J., Lohrey, M.: The isomorphism problem on classes of automatic structures with transitive relations. Trans. AMS 365, 5103–5151 (2013)

    Article  MathSciNet  Google Scholar 

  13. Kuske, D., Lohrey, M.: First-order and counting theories of \(\omega \)-automatic structures. In: Aceto, L., Ingólfsdóttir, A. (eds.) FoSSaCS 2006. LNCS, vol. 3921, pp. 322–336. Springer, Heidelberg (2006). https://doi.org/10.1007/11690634_22

    Chapter  MATH  Google Scholar 

  14. Rubin, S.: Automata presenting structures: a survey of the finite string case. Bull. Symb. Logic 14, 169–209 (2008)

    Article  MathSciNet  Google Scholar 

  15. Weber, A.: On the valuedness of finite transducers. Acta Informatica 27, 749–780 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich Kuske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuske, D. (2021). Second-Order Finite Automata: Expressive Power and Simple Proofs Using Automatic Structures. In: Moreira, N., Reis, R. (eds) Developments in Language Theory. DLT 2021. Lecture Notes in Computer Science(), vol 12811. Springer, Cham. https://doi.org/10.1007/978-3-030-81508-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81508-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81507-3

  • Online ISBN: 978-3-030-81508-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics