Abstract
Second-order finite automata, introduced recently by Andrade de Melo and de Oliveira Oliveira, represent classes of languages. Since their semantics is defined by a synchronized rational relation, they can be studied using the theory of automatic structures. We exploit this connection to uniformly reprove and strengthen known and new results regarding closure and decidability properties concerning these automata. We then proceed to characterize their expressive power in terms of automatic classes of languages studied by Jain, Luo, and Stephan.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
de Melo, A.A., de Oliveira Oliveira, M.: Second-order finite automata. In: Fernau, H. (ed.) CSR 2020. LNCS, vol. 12159, pp. 46–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50026-9_4
Bárány, V., Kaiser, Ł., Rubin, S.: Cardinality and counting quantifiers on omega-automatic structures. In: STACS 2008, pp. 385–396. IFIB Schloss Dagstuhl (2008)
Blumensath, A.: Automatic structures. Diplomarbeit, RWTH Aachen (1999)
Blumensath, A., Grädel, E.: Automatic structures. In: LICS 2000, pp. 51–62. IEEE Computer Society Press (2000)
Carayol, A., Löding, C.: MSO on the infinite binary tree: choice and order. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 161–176. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74915-8_15
Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite words. Theor. Comput. Sci. 108, 45–82 (1993)
Hodgson, B.: On direct products of automaton decidable theories. Theor. Comput. Sci. 19, 331–335 (1982)
Jain, S., Luo, Q., Stephan, F.: Learnability of automatic classes. J. Comput. Syst. Sci. 78(6), 1910–1927 (2012)
Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60178-3_93
Kuske, D.: Is Ramsey’s theorem \(\omega \)-automatic? In: STACS 2010, vol. 5, pp. 537–548. Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2010)
Kuske, D.: Where automatic structures benefit from weighted automata. In: Kuich, W., Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020, pp. 257–271. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24897-9_12
Kuske, D., Liu, J., Lohrey, M.: The isomorphism problem on classes of automatic structures with transitive relations. Trans. AMS 365, 5103–5151 (2013)
Kuske, D., Lohrey, M.: First-order and counting theories of \(\omega \)-automatic structures. In: Aceto, L., Ingólfsdóttir, A. (eds.) FoSSaCS 2006. LNCS, vol. 3921, pp. 322–336. Springer, Heidelberg (2006). https://doi.org/10.1007/11690634_22
Rubin, S.: Automata presenting structures: a survey of the finite string case. Bull. Symb. Logic 14, 169–209 (2008)
Weber, A.: On the valuedness of finite transducers. Acta Informatica 27, 749–780 (1990)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kuske, D. (2021). Second-Order Finite Automata: Expressive Power and Simple Proofs Using Automatic Structures. In: Moreira, N., Reis, R. (eds) Developments in Language Theory. DLT 2021. Lecture Notes in Computer Science(), vol 12811. Springer, Cham. https://doi.org/10.1007/978-3-030-81508-0_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-81508-0_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81507-3
Online ISBN: 978-3-030-81508-0
eBook Packages: Computer ScienceComputer Science (R0)