Skip to main content

The Range of State Complexities of Languages Resulting from the Cascade Product—The General Case (Extended Abstract)

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12811))

Included in the following conference series:

Abstract

We continue our investigation on the descriptional complexity of the cascade product of finite state devices started in [M. Holzer, C. Rauch: The Range of State Complexities of Languages Resulting from the Cascade Product—The Unary Case (Extended Abstract). Proc. CIAA, 2021]. Here we study the general case, that is, cascade products of reset, permutation-reset, permutation, and finite automata in general, where the left operand automaton has an alphabet of size at least two. In all cases, except for the cascade product of two permutation automata, it is shown that the whole range of state complexities, namely the interval [1, nm], where n is the state complexity of the left operand and m that of the right one, is reachable. The cascade product of two permutation automata produces a lot of non-reachable numbers—numbers of this kind are called magic in the relevant literature—even for arbitrary alphabet sizes. These results are in sharp contrast to the unary case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There are three types of automata for the left operand of the cascade product, namely unary reset, unary permutation(-reset), and unary finite automata in general and four types of automata for the right operand, that are reset, permutation, permutation-reset, and finite state device without restrictions.

  2. 2.

    For automata with input alphabet of size at least two we have four types of left operands instead of three as in the unary case. This leads to \(4\cdot 4=16\) cases.

References

  1. Ae, T.: Direct or cascade product of pushdown automata. J. Comput. Syst. Sci. 14(2), 257–263 (1977)

    Article  MathSciNet  Google Scholar 

  2. Arbib, M.A.: Algebraic Theory of Machines, Languages, and Semigroups. Academic Press, Cambridge (1968)

    MATH  Google Scholar 

  3. Čevorová, K.: Kleene star on unary regular languages. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031, pp. 277–288. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39310-5_26

    Chapter  Google Scholar 

  4. Čevorová, K., Jirásková, G., Krajňáková, I.: On the square of regular languages. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 136–147. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08846-4_10

    Chapter  MATH  Google Scholar 

  5. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Boston (1978)

    MATH  Google Scholar 

  6. Holzer, M., Rauch, C.: The range of state complexities of languages resulting from the cascade product—the unary case (extended abstract). In: Maneth, S. (eds.) Implementation and Application of Automata. CIAA 2021. Lecture Notes in Computer Science, vol. 12803. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79121-6_8

  7. Holzer, M., Hospodár, M.: The range of state complexities of languages resulting from the cut operation. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds.) LATA 2019. LNCS, vol. 11417, pp. 190–202. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13435-8_14

    Chapter  Google Scholar 

  8. Hricko, M., Jirásková, G., Szabari, A.: Union and intersection of regular languages and descriptional complexity. In: Mereghetti, C., Palano, B., Pighizzini, G., Wotschke, D. (eds.) Proceedings of the 7th Workshop on Descriptional Complexity of Formal Systems, pp. 170–181. Universita degli Studi di Milano, Como (2005)

    Google Scholar 

  9. Iwama, K., Kambayashi, Y., Takaki, K.: Tight bounds on the number of states of DFAs that are equivalent to \(n\)-state NFAs. Theor. Comput. Sci. 237(1–2), 485–494 (2000)

    Article  MathSciNet  Google Scholar 

  10. Jirásková, G.: Magic numbers and ternary alphabet. Internat. J. Found. Comput. Sci. 22(2), 331–344 (2011)

    Article  MathSciNet  Google Scholar 

  11. Maler, O.: On the Krohn-Rhodes cascaded decomposition theorem. In: Manna, Z., Peled, D.A. (eds.) Time for Verification. LNCS, vol. 6200, pp. 260–278. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13754-9_12

    Chapter  Google Scholar 

  12. Maler, O., Pnueli, A.: Tight bounds on the complexity of cascaded decomposition of automata. In: Proceedings of the 31st Annual Symposium on Foundations of Computer Science, pp. 672–682. IEEE Computer Society Press, St. Louis (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Holzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Holzer, M., Rauch, C. (2021). The Range of State Complexities of Languages Resulting from the Cascade Product—The General Case (Extended Abstract). In: Moreira, N., Reis, R. (eds) Developments in Language Theory. DLT 2021. Lecture Notes in Computer Science(), vol 12811. Springer, Cham. https://doi.org/10.1007/978-3-030-81508-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81508-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81507-3

  • Online ISBN: 978-3-030-81508-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics