Skip to main content

Technologies for Energy Production from Lignocellulosic Agricultural Residues

  • Chapter
  • First Online:
Innovative Renewable Waste Conversion Technologies

Abstract

Lignocellulosic agricultural residues are huge, but a considerably underutilized resource of biomass is available for energy. Mobilization of this potential for energy gives an opportunity to provide a secure energy supply contributing to the decarbonization of the energy sector. The chapter presents an original approach to introduce in the energy flow the lignocellulosic agricultural residues, in particular in areas where these ones are highly present. The improvement of quality and efficiency of agricultural residues’ combustion requires using special equipments and technical solution for fulfilling the environmental requirements, presented in this chapter. The operation of energy equipments impacts the environment. Thus, environmental impact assessments are required to evaluate the level, the possible effects and to determine regulations update.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Oliinyk, Y., Antonenko, V., Chaplygin, S., et al.: Preparation and implementation of projects to replace natural gas with biomass for thermal energy production in Ukraine. In: Geletukha, G.G. (ed.) Guideline (2015)

    Google Scholar 

  2. Energy and Environmental Analysis, Inc., an ICF International Company, and Eastern Research Group, Inc.: Biomass Combined Heat and Power Catalog of Technologies U. S. Environmental Protection Agency (2007)

    Google Scholar 

  3. UABIO Position Paper № 24, 2020, https://uabio.org/wp-content/uploads-/2020/09/Analityka_UABIO_-energetychne-vykorystannia_agrovidhodiv_en.pdf

  4. van Loo, S., Koppejan, J.: The Handbook of Biomass Combustion and Co-firing (2008)

    Google Scholar 

  5. Sander, B., Skøtt, T.: Bioenergy for electricity and heat—experiences from biomass-fired CHP plants in Denmark (2007)

    Google Scholar 

  6. Shpaara, D.: Corn. Growing, harvesting, conservation and use (2009)

    Google Scholar 

  7. Grain maize and corn-cob-mix harvested production in EU. Statistical data from Eurostat. https://ec.europa.eu/eurostat/en/

  8. World Agricultural Production, USDA Reports, https://apps.fas.usda.gov/psdonline/circulars/production.pdf

  9. UABIO Position Paper № 23, 2020. https://uabio.org/wp-content/uploads/2020/04/position-paper-uabio-23-en.pdf

  10. OECD-FAO Agricultural Outlook 2019–2028. http://www.fao.org/3/ca4076en/ca4076en.pdf

  11. Ertl, D.: Sustainable corn stover harvest. Iowa Corn Promotion Board (2013)

    Google Scholar 

  12. The value given by Ukraine’s National Academy of Agrarian Sciences in its letter to the Institute of Engineering Thermophysics (N 5–2/256 of 16.11.2012)

    Google Scholar 

  13. Schon, B., Darr, M.: Corn stover ash. PM 3051L, 2014. https://store.extension.iastate.edu/Product/Corn-Stover-Ash

  14. Physico-chemical composition of corn stover and corn cobs. Phyllis database containing information on the composition of biomass and waste. https://phyllis.nl/

  15. Cherenkov, A.V., Tsykov, V.S., Dziubetskyi, B.V., Shevchenko, M.S., et al.: Intensification of corn technologies—a guarantee for yield stabilization at 90–100 m.c./ha level (practical recommendations). NU Institute of Steppe zone agriculture NAASU, Dnepropetrovsk (2012)

    Google Scholar 

  16. Heggenstaller, A.: DuPont cellulosic ethanol: Sustainable corn stover harvest for biofuel production (2012)

    Google Scholar 

  17. Fleschhut, M., Hulsbergen, K.-J., Thurner, S., Eder, J.: Analysis of different corn stover harvest systems. LANDTECHNIK 71(6) (2016)

    Google Scholar 

  18. Recovering Maize Cob: Converting Untapped Biomass Resource into Valuable Feedstock. Becool project website. https://www.becoolproject.eu/2018/10/22/recovering-maize-cob-converting-untapped-biomass-resource-into-valuable-feedstock/

  19. Pari, L., Bergonzoli, S., Suardi, A., Alfano, V., Scarfone, A., Lazar, S.: Maize cob harvesting: first assessment of an innovative system. In: 26th European Biomass Conference and Exhibition, 2018

    Google Scholar 

  20. Erickson, M.J., Tyner, W.E.: The economics of harvesting corn cobs for energy https://www.extension.purdue.edu/extmedia/ID/ID-417-W.pdf

  21. Darr, M., Shah, A., Peyton, K., Webster, K.: Corn stover storage methods https://store.extension.iastate.edu/product/14077

  22. Rules of fire safety in the agro-industrial complex of Ukraine. http://zakon.rada.gov.ua/laws/show/z0313-07

  23. UABIO Position Paper № 25, 2020. https://uabio.org/wp-content/uploads/2020/10/uabio-position-paper-25-en-1.pdf

  24. Sunflower seed statistics: FAOSTAT portal. http://www.fao.org/faostat/en/#data

  25. State Statistics Service of Ukraine:Ukraine’s foreign trade. Statistical yearbook (2019)

    Google Scholar 

  26. State Statistics Service of Ukraine: Agriculture of Ukraine. Statistical yearbook for 2018.

    Google Scholar 

  27. Recommendations for advanced sunflower production technology.—К.: «Urozhai» (1981)

    Google Scholar 

  28. Kokhan, A.V., Gangur, V.V., Koretskyi, O.Ye., Len, O.I., Manko, L.A.: Sunflower in the crop rotations of the Left-Bank Forest-Steppe of Ukraine. Bulletin of the Center for Scientific Support of Agricultural Production of Kharkiv Region 2015, №18.

    Google Scholar 

  29. Nikitchyn, D.I.: Sunflower. К.: Urozhai (1993)

    Google Scholar 

  30. BEFS assessment for Turkey: Sustainable bioenergy options from crop and livestock residues. FAO, 2016. http://www.fao.org/3/a-i6480e.pdf

  31. Marechal, V., Rigal, L.: Characterization of by-products of sunflower culture—commercial applications for stalks and heads. Ind. Crops Prod. 10(3), 185–200 (1999)

    Google Scholar 

  32. Dubrovin, V.O., Golub, G.A., Drahniev, C.V., Geletukha, G.G., Zheliezna, T.A., Kucheruk, P.P., Matveev, Yu.B., Kudria, S.O., Zabarnyi, G.M., Masliukova, Z.V.: Methods of generalized assessment of technical energy potential of biomass (2013)

    Google Scholar 

  33. Duca, D., Toscano, G., Riva, G., Mengarelli, C., Rossini, G., Pizzi, A., Del Gatto, A., Foppa Pedretti, E.: Quality of residues of the biodiesel chain in the energy field. Ind. Crops Prod. 75(Part A), 91–97 (2015)

    Google Scholar 

  34. Vasiliev, D.: Sunflower. M.: Agropromizdat (1990)

    Google Scholar 

  35. Kutsenko, O., Kocherga, A., Filonenko, C.: Industrial crops. Tutorial (2003)

    Google Scholar 

  36. Mathias, J.D., et al.: Upcycling sunflower stems as natural fibers for biocomposite applications. BioResources 10(4), 8076–8088 (2015)

    Article  Google Scholar 

  37. Kovačić, Đ, Kralik, D., Rupčić, S., Jovičić, D., Spajić, R., Tišma, M.: Soybean straw, corn stover and sunflower stalk as possible substrates for biogas production in croatia: a review. Chem. Biochem. Eng. Q. 31(3), 187–198 (2017)

    Article  Google Scholar 

  38. Characterisation of Agricultural Waste Co- and By-Products. Report of AgroCycle project, 2016.

    Google Scholar 

  39. Unal, H., Alibas, K.: Determining of the suitable burning method for wheat straw and sunflower stalks. J. Appl. Sci. 6, 435–444 (2006)

    Article  Google Scholar 

  40. Zhurka, M., Spyridonidis, A., Vasiliadou, I.A., Stamatelatou, K.: Biogas production from sunflower head and stalk residues: effect of alkaline pretreatment. Molecules 25(1), 164 (2020)

    Article  Google Scholar 

  41. Guide to biogas. From production to use, FNR, 2012

    Google Scholar 

  42. Wellinger, A., Murphy, J., Baxter, D.: The Biogas Handbook. Science, Production and Applications. Woodhead Publishing Series in Energy (Book 52) (2013)

    Google Scholar 

  43. Monlau, F., Barakat, A., Steyer, J.P., Carrere, H.: Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Biores. Technol. 120, 241–247 (2012)

    Article  Google Scholar 

  44. Monlau, F., Kaparaju, P., Trably, E., Steyer, J.P., Carrere, H.: Alkaline pretreatment to enhance one-stage CH4 and two-stage H2/CH4 production from sunflower stalks: mass, energy and economical balances. Chem. Eng. J. 260, 377–385 (2015)

    Article  Google Scholar 

  45. Brazil, O.A.V., et al.: Integral use of lignocellulosic residues from different sunflower accessions: analysis of the production potential for biofuels. J. Clean. Prod. 221, 430–438 (2019)

    Article  Google Scholar 

  46. Ruiz, E., Cara, C., Ballesteros, M., Manzanares, P., Ballesteros, I., Castro, E.: Ethanol production from pretreated olive tree wood and sunflower stalks by an SSF process. Appl. Biochem. Biotechnol. 130(1–3), 631–643 (2006)

    Article  Google Scholar 

  47. Raquel Ruiz E., et al.: Strategies for bioethanol production from sunflower stalks. Afinidad—Barcelona 68(556), 417–423 (2011)

    Google Scholar 

  48. Yusoff, M.N.A.M., Zulkifli, N.W.M., Masum, B.M., Masjuki, H.H.: Feasibility of bioethanol and biobutanol as transportation fuel in spark-ignition engine: a review. RSC Adv. 5, 100184–100211 (2015)

    Article  Google Scholar 

  49. International Organization for Standardization: Environmental Management: Life Cycle Assessment: Principles and Framework, vol. 14040. ISO (1997)

    Google Scholar 

  50. Nussbaumer, T., Oser, M.: Evaluation of biomass combustion based energy systems by cumulative energy demand and energy yield coefficient. Report for International Energy Agency and Swiss Federal Office of Energy, 2004

    Google Scholar 

  51. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2018.328.01.0082.01.ENG&toc=OJ:L:2018:328:TOC

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgii Geletukha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geletukha, G., Drahniev, S., Zheliezna, T., Zubenko, V., Haidai, O. (2021). Technologies for Energy Production from Lignocellulosic Agricultural Residues. In: Lazaroiu, G., Mihaescu, L. (eds) Innovative Renewable Waste Conversion Technologies . Springer, Cham. https://doi.org/10.1007/978-3-030-81431-1_12

Download citation

Publish with us

Policies and ethics