Skip to main content

Magnetoelasticity and Magnetostriction for Implementing Biomedical Sensors

  • Chapter
  • First Online:
Engineering Biomaterials for Neural Applications

Abstract

In this chapter, the physical principles underlying the phenomenologies arising from the magnetoelastic coupling occurring in materials exhibiting ferromagnetic order are first reviewed. From those principles, several generic designs of magnetoelastic sensors are discussed and, with special detail, that corresponding to resonant sensors. Finally, exemplary biomedical applications of magnetoelastic sensors to the measurement of the mechanical stress in bone fractures healing plates, sutures, and laryngeal muscles, the monitoring of the local curvature of epithelial tissues, the control of cell growth, and the measurement of blood coagulation kinetic parameters are reviewed. We conclude with a brief vision on the future perspectives of the magnetoelastic sensing technology and its biomedical applications. Although unexplored to date in the context of traumatically injured neural tissues, we hope these biomedical approaches, secondarily benefitting patients with traumatic brain and spinal cord injuries, could inspire advances in the field toward their implementation for neural scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kimizuka M (2012) Historical development of magnetic recording and tape recorder. Survey reports on the systematization of technologies, vol. 17. National Museum of Nature and Science, Tokyo. http://sts.kahaku.go.jp/diversity/document/system/pdf/073_e.pdf. Cited 30 Sep 2021

  2. Infoholic Research. https://www.infoholicresearch.com/report/magnetic-tape-market-trends-and-forecast-to-2022/#:~:text=AccordingtoInfoholicResearch%2Cthe,reach%246.5billionby2022. Cited 30 Sep 2021

  3. Rousseau O, Viret M (2012) Interaction between ferromagnetic resonance and spin currents in nanostructures. Phys Rev B 85:144413

    Article  Google Scholar 

  4. Urdiroz U, Gómez A, Magaz M et al. (2021) Antiphase resonance at X-ray irradiated microregions in amorphous Fe80B20 stripes. J Magn Magn Mater 520:167017

    Article  CAS  Google Scholar 

  5. Joule JP (1842) On a new class of magnetic forces. Ann Electric Magn Chem 8:219–224

    Google Scholar 

  6. Garcia-Arribas A, Gutiérrez J, Kurlyandskaya GV et al. (2014) Sensor applications of soft magnetic materials based on magneto-impedance, magneto-elastic resonance and magnetoelectricity. Sensors 14:7602–7624

    Article  Google Scholar 

  7. Lacheisserie EDTD (1993) Magnetostriction: theory and applications of magnetoelasticity. CRC Press, Boca Raton, London

    Google Scholar 

  8. Lacheisserie EDTD (2002) Magnetostrictive materials. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  9. del Moral A (2007) Magnetostriction and magnetoelasticity theory: a modern view. In: Handbook of magnetism and advanced magnetic materials. Wiley, London

    Google Scholar 

  10. Baghdasaryan G, Danoyan Z (2018) Basics of the theory of magnetoelasticity. In Magnetoelastic waves. Springer Nature

    Google Scholar 

  11. Grimes CA, Mungle CS, Zeng K et al. (2002) Wireless magnetoelastic resonance sensors: a critical review. Sensors 2:294–313

    Article  CAS  Google Scholar 

  12. Livinston JD (1982) Magnetomechanical properties of amorphous metals. Phys Status Solidi A 70:591–596

    Article  Google Scholar 

  13. Mungle CS, Grimes CA Dreschel WR (2002) Magnetic field tuning of the frequency temperature response of a magnetoelastic sensor. Sensor Actuat A-Phys 101:143–149

    Article  CAS  Google Scholar 

  14. Kouzoudis D, Grimes CA (2000) The frequency response of magnetoelastic sensor to stress and atmospheric pressure. Smart Mater Struct 9:885–889

    Article  Google Scholar 

  15. Kouzoudis D, Grimes CA (2000) Remote query fluid-flow velocity measurement using magnetoelastic thick-film sensor. J Appl Phys 87:6301–6303

    Article  CAS  Google Scholar 

  16. Tormes CD, Beltrami M, Cruz RCD, Missell FP (2014) Characterization of drying behavior of granular materials using magnetoelastic sensors. NDT&E Int 66:67–71

    Article  Google Scholar 

  17. Zhang K, Zhang L, Fu L et al. (2013) Magnetostrictive resonators as sensors and actuators. Sensor Actuat A-Phys 200:2–10

    Article  CAS  Google Scholar 

  18. Sagasti A (2018) Functionalized magnetoelastic resonant platforms for chemical and biological detection purposes. PhD Thesis (EHU/UPV, Leioa)

    Google Scholar 

  19. Zheng Y, Xie D, Ma J et al. (2011) Micro magnetic field sensor based on Terfenol-D/PZT/Terfenol-D magnetoelectric composites. Key Eng Mat 483:190

    Article  Google Scholar 

  20. Lasassmeh SM, Lynch E, Law CT (2017) Fiber optical current sensor based on tapered Terfenol-D composite. Front Optics, OSA Technical Digest (online) (Optical Society of America, 2017), paper JTu2A.29

    Google Scholar 

  21. Swartz A, Singh C (2016) Automated scour detection arrays using bio-inspired magnetostrictive flow sensors. Final technical report, Michigan Technological University—USDOT Cooperative Agreement No. RITARS-12-H-MTU

    Google Scholar 

  22. Fischer WJ, Sauer S, Marschner U et al. (2009) Galfenol resonant sensor for indirect wireless osteosynthesis plate bending measurements. Sensors 2009 IEEE, Christchurch, New Zealand p 611–616

    Google Scholar 

  23. Petrakovski GA (1981) Amorphous magnetic materials. Sov Phys Usp 24:511

    Article  Google Scholar 

  24. Niinomi M (2010) Metals for biomedical devices. CRC Press, Boca Raton, Boston, New York, Washington, Oxford, Cambridge, New Delhi

    Book  Google Scholar 

  25. González JM, Madurga V, Poza M, Hernando A (1981) Torsional elastic behavior in METGLASS Fe40Ni40P14B6. J Phys D App Phys 14:2243

    Article  Google Scholar 

  26. Mizoguchi T (1991) Amorphous magnetic materials, in Physics and engineering applications of magnetism. Springer Series in Solid-State Sciences, vol 92. Springer, Berlin, Heidelberg

    Google Scholar 

  27. Hernando A, Madurga V, González JM, Cebollada F (1983) Helical anisotropy induced by annealing in METGLAS-2826. J Magn Magn Mater 1553–1554

    Google Scholar 

  28. Liniers M, Madurga V, Vázquez M, Hernando A (1985) Magnetostrictive torsional strain in transverse-field-annealed MetglasⓇ 2605. Phys Rev B 31:4425

    Article  CAS  Google Scholar 

  29. Nielsen O, Hernando A, Madurga V, Gonzalez JM (1985) Experiments concerning the origin of stress anneals induced magnetic anisotropy in metallic glass ribbons. J Magn Magn Mater 46:341–349

    Article  CAS  Google Scholar 

  30. Murillo N, Blanco JM, González J et al. (1994) Stress annealing in Fe73.5Cu1Ta3Si13.5B9 amorphous alloy: induced magnetic anisotropy and variation of the magnetostriction constant. J App Phys 76:1131–1134

    Article  Google Scholar 

  31. China Amorphous Technology Co. Amorphous Core & Nanocrystalline Core Factory. http://www.catech-china.cn/Fe-based-Amorphous-Ribbon.html. Cited 30 Sep 2021

  32. Vacuumschmelze. https://vacuumschmelze.com/products/soft-magnetic-materials-and-stamped-parts/Amorphous-Material---VITROVAC. Cited 30 Sep 2021

  33. Liquid Metal. https://www.liquidmetal.com. Cited 30 Sep 2021

  34. Tan Y (2017) A passive and wireless sensor for bone plate strain monitoring. Sensors 17:2635

    Article  Google Scholar 

  35. Oess NP, Weisse B, Nelson BJ (2009) Magnetoelastic strain sensor for optimized assessment of bone fracture fixation. IEEE Sens J 9:961

    Article  Google Scholar 

  36. Yu K, Ren L, Tan Y, Wang J (2019) Wireless magnetoelasticity-based sensor for monitoring the degradation behavior of polylactic acid artificial bone in vitro. Appl Sci 9:739

    Article  CAS  Google Scholar 

  37. Klosterhoff BS, Tsang M, She D et al. (2017) Implantable sensors for regenerative medicine. J Biomech Eng 139:021009-1

    Article  Google Scholar 

  38. Ren L, Yu K, Tan Y (2019) Applications and advances of magnetoelastic sensors in biomedical engineering: a review. Materials 12:1135

    Article  CAS  Google Scholar 

  39. Pereles BD, DeRouin AJ, Ong KG (2014) A Wireless, passive magnetoelastic force-mapping system for biomedical applications. J Biomech Eng 136:011010

    Article  Google Scholar 

  40. DeRouin A, Pacella N, Zhao C et al. (2016) A wireless sensor for real-time monitoring of tensile force on sutured wound sites. IEEE T Biomed Eng 63:1665–1171

    Article  Google Scholar 

  41. Horeman T, Meijer E, Harlaar J et al. (2013) Force sensing in surgical sutures. PLoS ONE 8:0084466

    Article  Google Scholar 

  42. Schreiber J (2005) A review of the literature on evidence-based practice in physical therapy. Int J Allied Health Sci Practice 3:1–10

    Google Scholar 

  43. Jette DU, Bacon K, Batty C et al. (2003) Evidence-based practice: beliefs, attitudes, knowledge, and behaviors of physical therapists. Phys Ther 83:786–805

    Article  Google Scholar 

  44. Kaniusas E, Pfützner H, Mehnen L et al. (2004) Magnetoelastic skin curvature sensor for biomedical applications. In: Sensors 2004 IEEE, Vienna, Austria, vol 3, p 1484–1487

    Google Scholar 

  45. Moreno MCI, Gil-Loyzaga P, Gómez ER et al. (2007) Magnetoelastic sensors as a new tool for laryngeal research. Acta Oto-Laryngol 127:1182–1187

    Article  Google Scholar 

  46. Pina E, Burgos E, Prados C et al. (2001) Magnetoelastic sensor as a probe for muscular activity: an in vivo experiment. Sensor Actuat A 91:99

    Article  CAS  Google Scholar 

  47. Rivero G, Multigner M, Spottorno J (2012) Magnetic sensors for biomedical applications. In: Magnetic Sensors—Principles and Applications, Kevin Kuang, IntechOpen, https://doi.org/10.5772/37285. Available from: https://www.intechopen.com/chapters/30947. Cited 30 Sep 2021

  48. Rivero G, Crespo P, Spottorno J et al. (2008) Sensor system for continuously monitoring the cellular growth in situ based in magnetoelastic sensor. Patent P200801973, Spain

    Google Scholar 

  49. Rivero G, García-Páez JM, Álvarez L et al. (2007) Magnetic sensor for early detection of heart valve bioprostheses failure. Sensor Lett 5:263

    Article  CAS  Google Scholar 

  50. Rivero G, García-Páez JM, Alvarez L et al. (2008) Sensor system for early detection of heart valve bioprostheses failure. Sensor Actuat A 142:511–519

    Article  CAS  Google Scholar 

  51. Fuse T, Taki M, Minohara S (1984) Submillimeter-wave penetration into biological tissues. In: Int Symposium on Electromagnetic Compatibility, p. 376

    Google Scholar 

Download references

Acknowledgements

JMG acknowledges project MAT2016-80394-R, financed by the Spanish Research Agency (AEI/FEDER, UE) for providing funds for the preparation of the chapter. JMG would also like to dedicate this work to the memory of Dr. Guillermo Rivero.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús María González .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González, J.M. (2022). Magnetoelasticity and Magnetostriction for Implementing Biomedical Sensors. In: López-Dolado, E., Concepción Serrano, M. (eds) Engineering Biomaterials for Neural Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-81400-7_6

Download citation

Publish with us

Policies and ethics