Abstract
Accurate modeling of contamination in subsurface flow and water aquifers is crucial for agriculture and environmental protection. Here, we demonstrate a parallel algorithm to quantify the propagation of uncertainty in the dispersal of pollution in subsurface flow. Specifically, we consider the density-driven flow and estimate how uncertainty from permeability and porosity propagates to the solution. We take a two-dimensional Elder-like problem as a numerical benchmark, and we use random fields to model our limited knowledge on the porosity and permeability. We use the well-known low-cost generalized polynomial chaos (gPC) expansion surrogate model, where the gPC coefficients are computed by projection on sparse tensor grids. The numerical solver for the deterministic problem is based on the multigrid method and is run in parallel. Computation of high-dimensional integrals over the parametric space is done in parallel too.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
R. Askey and J. Wilson. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Providence, R.I., U.S.A. : American Mathematical Society, 1985.
I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal., 45(3):1005–1034 (electronic), 2007.
I. Babuška, R. Tempone, and G. Zouraris. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM Journal on Numerical Analysis, 42(2):800–825, 2004.
J. Bäck, F. Nobile, L. Tamellini, and R. Tempone. Stochastic spectral Galerkin and collocation methods for pdes with random coefficients: a numerical comparison. In Spectral and High Order Methods for Partial Differential Equations, pages 43–62. Springer, 2011.
V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpolation on sparse grids. Advances in Computational Mathematics, 12(4):273–288, 2000.
J. Bear. Dynamics of fluid in Porous Media. Dover Publications, INC. New York, 1972.
J. Bear. Hydraulics of Groundwater. Dover Publications. Inc., Mineola, 1979.
J. Bear and Y. Bachmat. Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic Publishers, Dordrecht, Boston, London, 1990.
G. Blatman and B. Sudret. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probabilistic Engineering Mechanics, 25(2):183–197, 2010.
F. Bode, T. Ferré, N. Zigelli, M. Emmert, and W. Nowak. Reconnecting stochastic methods with hydrogeological applications: A utilitarian uncertainty analysis and risk assessment approach for the design of optimal monitoring networks. Water Resources Research, 54(3):2270–2287, 2018.
M. Bompard, J. Peter, and J.-A. Désidéri. Surrogate models based on function and derivative values for aerodynamic global optimization. In Fifth European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, Lisbon, Portugal, 2010.
H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147–269, 2004.
R. E. Caflisch. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica, 7:1–49, 1998.
J. Carrera. An overview of uncertainties in modelling groundwater solute transport. Journal of Contaminant Hydrology, 13(1):23–48, 1993. Chemistry and Migration of Actinides and Fission Products.
J.-P. Chiles and P. Delfiner. Geostatistics: modeling spatial uncertainty, volume 497. John Wiley & Sons, 2009.
A. Chkifa, A. Cohen, and C. Schwab. Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. Journal de Mathematiques Pures et Appliques, 103(2):400–428, 2015.
C. W. Clenshaw and A. R. Curtis. A method for numerical integration on an automatic computer. Numerische Mathematik, 2(1):197–205, Dec 1960.
P. Conrad and Y. Marzouk. Adaptive smolyak pseudospectral approximations. SIAM Journal on Scientific Computing, 35(6):A2643–A2670, 2013.
P. Constantine, M. Eldred, and E. Phipps. Sparse pseudospectral approximation method. Computer Methods in Applied Mechanics and Engineering, 229-232:1–12, 2012.
A. Costa. Permeability-porosity relationship: A reexamination of the kozeny-carman equation based on a fractal pore-space geometry assumption. Geophysical Research Letters, 33(2), 2006.
C. Cremer and T. Graf. Generation of dense plume fingers in saturated–unsaturated homogeneous porous media. Journal of Contaminant Hydrology, 173:69–82, 2015.
H.-J.-G. Diersch and O. Kolditz. Variable-density flow and transport in porous media: approaches and challenges. In Wasy Software FEFLOWⒸ - Finite Element Subsurface flow and Transport Simulation System, volume 2. Wasy GmbH, 2005.
S. Dolgov, B. Khoromskij, A. Litvinenko, and H. Matthies. Computation of the response surface in the tensor train data format. arXiv:1406.2816, 2014.
S. Dolgov, B. Khoromskij, A. Litvinenko, and H. Matthies. Polynomial chaos expansion of random coefficients and the solution of stochastic partial differential equations in the tensor train format. SIAM/ASA Journal on Uncertainty Quantification, 3(1):1109–1135, 2015.
A. Doostan, A. Validi, and G. Iaccarino. Non-intrusive low-rank separated approximation of high-dimensional stochastic models. Comput. Methods Appl. Mech. Engrg., (263):42–55, 2013.
B. Eisfeld, H. Barnewitz, W. Fritz, and F. Thiele. Management and Minimisation of Uncertainties and Errors in Numerical Aerodynamics - Results of the German collaborative project MUNA. Springer, 2013.
J. Elder, C. Simmons, H.-J. Diersch, P. Frolkovič, E. Holzbecher, and K. Johannsen. The Elder problem. Fluids, 2:11, 2017.
O. Ernst, A. Mugler, H.-J. Starkloff, and E. Ullmann. On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2):317–339, 2012.
M. Espig, W. Hackbusch, A. Litvinenko, H. Matthies, and P. Waehnert. Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats. Computers and Mathematics with Applications, 67(4):818–829, 2014. High-order Finite Element Approximation for Partial Differential Equations.
M. Espig, W. Hackbusch, A. Litvinenko, H. Matthies, and E. Zander. Efficient analysis of high dimensional data in tensor formats. In Sparse Grids and Applications, pages 31–56. Springer, 2013.
M. Espig, W. Hackbusch, A. Litvinenko, H. Matthies, and E. Zander. Post-processing of high-dimensional data. arXiv:1906.05669, accepted to JCP, pages 1–32, 2019.
Y. Fan, C. Duffy, and D. Oliver. Density-driven groundwater flow in closed desert basins: field investigations and numerical experiments. Journal of Hydrology, 196(1):139–184, 1997.
P. Frolkovič. Consistent velocity approximation for density driven flow and transport. In R. Van Keer and at al., editors, Advanced Computational Methods in Engineering, Part 2: Contributed papers, pages 603–611, Maastricht, 1998. Shaker Publishing.
P. Frolkovič. Maximum principle and local mass balance for numerical solutions of transport equation coupled with variable density flow. Acta Mathematica Universitatis Comenianae, 1(68):137–157, 1998.
P. Frolkovič and P. Knabner. Consistent velocity approximations in finite element or volume discretizations of density driven flow. In A. A. Aldama and et al., editors, Computational Methods in Water Resources XI, pages 93–100, Southhampten, 1996. Computational Mechanics Publication.
T. Gerstner and M. Griebel. Numerical integration using sparse grids. Numer. Algorithms, 18(3-4):209–232, 1998.
R. Ghanem, H. Owhadi, and D. Higdon. Handbook of uncertainty quantification. Springer, 06 2017.
L. Giraldi, A. Litvinenko, D. Liu, H. Matthies, and A. Nouy. To be or not to be intrusive? the solution of parametric and stochastic equations—the “plain vanilla” galerkin case. SIAM Journal on Scientific Computing, 36(6):A2720–A2744, 2014.
A. A. Giunta, M. S. Eldred, and J. P. Castro. Uncertainty quantification using response surface approximation. In 9th ASCE Specialty Conference on Probabolistic Mechanics and Structural Reliability, Albuquerque, New Mexico, USA, 2004.
I. Graham, F. Y. Kuo, J. Nichols, R. Scheichl, C. Schwab, and I. H. Sloan. Quasi-monte carlo finite element methods for elliptic pdes with lognormal random coefficients. Numerische Mathematik, pages 1–40, 2015.
I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. Sloan. Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys., 230(10):3668–3694, 2011.
M. Griebel. Sparse grids and related approximation schemes for higher dimensional problems. In Foundations of computational mathematics, Santander 2005, volume 331 of London Math. Soc. Lecture Note Ser., pages 106–161. Cambridge Univ. Press, Cambridge, 2006.
W. Hackbusch. Multi-Grid Methods and Applications. Springer, Berlin, 1985.
W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Springer, New-York, 1994.
S. Hosder, R. Walters, and R. Perez. A non-intrusive polynomial chaos method for uncertainty propagation in cfd simulations. 44th AIAA Aerospace Sciences Meeting and Exhibit, January 2006, Reno, Nevada, (AIAA 2006-891):209–236, 2006.
S. Joe and F. Kuo. Constructing sobol sequences with better two-dimensional projections. SIAM Journal on Scientific Computing, 30(5):2635–2654, 2008.
K. Johannsen. On the validity of the boussinesq approximation for the Elder problem. Computational Geosciences, 7(3):169–182, Sep 2003.
N. H. Kim, H. Wang, and N. V. Queipo. Efficient shape optimization under uncertainty using polynomial chaos expansions and local sensitivities. AIAA journal, 44(5):1112–1116, 2006.
A. Klimke. Sparse grid interpolation toolbox,www.ians.uni-stuttgart.de/spinterp/. 2008.
H. Kobus. Soil and groundwater contamination and remediation technology in europe. In K. Sato and Y. Iwasa, editors, Groundwater Updates, pages 3–8, Tokyo, 2000. Springer Japan.
B. Koohbor, M. Fahs, B. Ataie-Ashtiani, B. Belfort, C. T. Simmons, and A. Younes. Uncertainty analysis for seawater intrusion in fractured coastal aquifers: Effects of fracture location, aperture, density and hydrodynamic parameters. Journal of Hydrology, 571:159–177, 2019.
F. Y. Kuo, C. Schwab, and I. H. Sloan. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic pdes with random coefficients. Foundations of Computational Mathematics, pages 1–39, 2015.
O. P. Le Maître and O. M. Knio. Spectral methods for uncertainty quantification. Series: Scientific Computation. Springer, New York, 2010.
A. Litvinenko. Partial inversion of elliptic operator to speed up computation of likelihood in Bayesian inference. arXiv:1708.02207, pages 1–31, 2017.
A. Litvinenko, D. Logashenko, R. Tempone, G. Wittum, and D. Keyes. Solution of the 3D density-driven groundwater flow problem with uncertain porosity and permeability. GEM - International Journal on Geomathematics, 11(10), 2019.
A. Litvinenko and H. Matthies. Uncertainties quantification and data compression in numerical aerodynamics. PAMM, 11(1):877–878, 2011.
A. Litvinenko, H. Matthies, and T. A. El-Moselhy. Sampling and low-rank tensor approximation of the response surface. In J. Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan, editors, Monte Carlo and Quasi Monte Carlo Methods 2012, volume 65 of Springer Proceedings in Mathematics & Statistics, pages 535–551. Springer Berlin Heidelberg, 2013.
D. Liu and S. Görtz. Efficient quantification of aerodynamic uncertainty due to random geometry perturbations. In A. Dillmann et al., editors, New Results in Numerical and Experimental Fluid Mechanics IX, pages 65–73. Springer International Publishing, 2014.
D. Liu, A. Litvinenko, C. Schillings, and V. Schulz. Quantification of airfoil geometry-induced aerodynamic uncertainties—comparison of approaches. SIAM/ASA Journal on Uncertainty Quantification, 5(1):334–352, 2017.
G. J. A. Loeven, J. A. S. Witteveen, and H. Bijl. A probabilistic radial basis function approach for uncertainty quantification. In Proceedings of the NATO RTO-MP-AVT-147 Computational Uncertainty in Military Vehicle design symposium, 2007.
L. Mathelin, M. Y. Hussaini, and T. A. Zang. Stochastic approaches to uncertainty quantification in CFD simulations. Numer. Algorithms, 38(1-3):209–236, 2005.
H. Matthies. Uncertainty quantification with stochastic finite elements. In E. Stein, R. de Borst, and T. R. J. Hughes, editors, Encyclopedia of Computational Mechanics. John Wiley & Sons, Chichester, 2007.
H. Matthies, E. Zander, B. Rosic, and A. Litvinenko. Computational approaches to inelastic media with uncertain parameters. Advanced Modeling and Simulation in Engineering Sciences, 3(24):28–43, 2016.
H. G. Matthies and A. Keese. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Computer Methods in Applied Mechanics and Engineering, 194(12-16):1295–1331, 2005.
H. G. Matthies, E. Zander, B. V. Rosić, A. Litvinenko, and O. Pajonk. Inverse problems in a bayesian setting. In Ibrahimbegovic A. (eds) Computational Methods for Solids and Fluids. Computational Methods in Applied Sciences, volume 41, pages 245–286. Springer, Cham, 2016.
H. Najm. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annual Review of Fluid Mechanics, 41(1):35–52, 2009.
F. Nobile, L. Tamellini, F. Tesei, and R. Tempone. An adaptive sparse grid algorithm for elliptic PDEs with log-normal diffusion coefficient. MATHICSE Technical Report 04, 2015.
F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM Journal on Numerical Analysis, 46(5):2309–2345, 2008.
E. Novak and K. Ritter. High dimensional integration of smooth functions over cubes. Numerische Mathematik, 75(1):79–97, Nov 1996.
E. Novak and K. Ritter. The curse of dimension and a universal method for numerical integration. In Multivariate approximation and splines (Mannheim, 1996), volume 125 of Internat. Ser. Numer. Math., pages 177–187. Birkhäuser, Basel, 1997.
E. Novak and K. Ritter. Simple cubature formulas with high polynomial exactness. Constr. Approx., 15(4):499–522, 1999.
W. Nowak. Geostatistical methods for the identification of flow and transport parameters in the subsurface. Ph.D. Thesis, University of Stuttgart, Germany, Heft 134, 2004.
K. Petras. Smolpack—a software for Smolyak quadrature with delayed Clenshaw-Curtis basis-sequence. http://www-public.tu-bs.de:8080/ petras/software.html.
V. Post and G. Houben. Density-driven vertical transport of saltwater through the freshwater lens on the island of baltrum (germany) following the 1962 storm flood. Journal of Hydrology, 551:689–702, 2017. Investigation of Coastal Aquifers.
I. Radović, I. Sobol, and R. Tichy. Quasi-monte carlo methods for numerical integration: Comparison of different low discrepancy sequences. Monte Carlo Methods and Applications, 2(1):1–14, 1996.
S. Reiter, D. Logashenko, A. Vogel, and G. Wittum. Mesh generation for thin layered domains and its application to parallel multigrid simulation of groundwater flow. submitted to Comput. Visual Sci., 2017.
S. Reiter, A. Vogel, I. Heppner, M. Rupp, and G. Wittum. A massively parallel geometric multigrid solver on hierarchically distributed grids. Computing and Visualization in Science, 16(4):151–164, August 2013.
B. Rosić, A. Kučerová, J. Sýkora, O. Pajonk, A. Litvinenko, and H. Matthies. Parameter identification in a probabilistic setting. Engineering Structures, 50(0):179–196, 2013. Engineering Structures: Modelling and Computations (special issue IASS-IACM 2012).
Y. Rubin. Applied stochastic hydrogeology. Oxford University Press, 2003.
A. Schneider, K.-P. Kröhn, and A. Püschel. Developing a modelling tool for density-driven flow in complex hydrogeological structures. Comput. Visual Sci., 15(4):163–168, 2012.
M. Sinsbeck and W. Nowak. An optimal sampling rule for nonintrusive polynomial chaos expansions of expensive models. International Journal for Uncertainty Quantification, 5(3):275–295, 2015.
S. A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov. Math. Dokl., 4:240–243, 1963.
W. C. Snyder. Accuracy estimation for quasi-monte carlo simulations. Mathematics and Computers in Simulation, 54(1–3):131–143, 2000.
T. Sullivan. Introduction to Uncertainty Quantification. Springer, 2017.
D. Tartakovsky. Assessment and management of risk in subsurface hydrology: A review and perspective. Advances in Water Resources, 51:247–260, 2013. 35th Year Anniversary Issue.
A. Teckentrup, P. Jantsch, C. Webster, and M. Gunzburger. A multilevel stochastic collocation method for partial differential equations with random input data. SIAM/ASA Journal on Uncertainty Quantification, 3(1):1046–1074, 2015.
L. Tenorio. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2017.
R. A. Todor and C. Schwab. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal., 27(2):232–261, 2007.
E. Ullmann. A Kronecker product preconditioner for stochastic Galerkin finite element discretizations. SIAM J. Scientific Computing, 32(2):923–946, 2010.
E. Ullmann, H. Elman, and O. G. Ernst. Efficient iterative solvers for stochastic Galerkin discretizations of log-transformed random diffusion problems. SIAM Journal on Scientific Computing, 34(2):A659–A682, 2012.
H. Vereecken, A. Schnepf, J. Hopmans, M. Javaux, D. Or, T. Roose, J. Vanderborght, M. Young, W. Amelung, M. Aitkenhead, S. Allison, S. Assouline, P. Baveye, M. Berli, N. Brüggemann, P. Finke, M. Flury, T. Gaiser, G. Govers, T. Ghezzehei, P. Hallett, H. Hendricks Franssen, J. Heppell, R. Horn, J. Huisman, D. Jacques, F. Jonard, S. Kollet, F. Lafolie, K. Lamorski, D. Leitner, A. McBratney, B. Minasny, C. Montzka, W. Nowak, Y. Pachepsky, J. Padarian, N. Romano, K. Roth, Y. Rothfuss, E. Rowe, A. Schwen, J. imnek, A. Tiktak, J. Van Dam, S. van der Zee, H. Vogel, J. Vrugt, T. Wöhling, and I. Young. Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone Journal, 15(5):vzj2015.09.0131, 2016.
A. Vogel, S. Reiter, M. Rupp, A. Nägel, and G. Wittum. Ug 4: A novel flexible software system for simulating pde based models on high performance computers. Computing and Visualization in Science, 16(4):165–179, August 2013.
C. Voss and W. Souza. Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resources Research, 23(10):1851–1866, 1987.
N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60:897–936, 1938.
Y. Xie, C. Simmons, A. Werner, and H.-J. G. Diersch. Prediction and uncertainty of free convection phenomena in porous media. Water Resources Research, 48(2), 2012.
D. Xiu. Fast numerical methods for stochastic computations: A review. Commun. Comput. Phys., 5, No. 2-4:242–272, 2009.
D. Xiu. Numerical methods for stochastic computations: a spectral method approach. Princeton university press, 2010.
D. Xiu and G. Karniadakis. Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of Computational Physics, 187(1):137–167, 2003.
D. Xiu and G. E. Karniadakis. Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Meth. Appl. Mech. Eng., 191:4927–4948, 2002.
D. Xiu and G. E. Karniadakis. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 24:619–644, 2002.
D. Xiu, D. Lucor, C.-H. Su, and G. E. Karniadakis. Stochastic modeling of flow-structure interactions using generalized polynomial chaos. 124:51–69, 2002.
B. Zhaojun, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM. Philadelphia, 2000.
Acknowledgements
This work was supported by the King Abdullah University of Science and Technology (KAUST) and by the Alexander von Humboldt Foundation. We used the resources of the Supercomputing Laboratory at KAUST, under the development project k1051. We would like to thank the KAUST core lab for the assistance with Shaheen II parallel supercomputer, developers of the ug4 simulation framework from Frankfurt University, two anonymous reviewers, and the associate editor for their careful reading and suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendix A: Difficulties in Computing Statistics
Appendix A: Difficulties in Computing Statistics
We consider the following uncertain porosity

with 3 stochastic parameters θ 1, θ 2, θ 3 ∼ U[−1, 1], x ∈ [0, 600], y ∈ [0, 150]. Figure 8 shows four different realizations of the solution (the mass fraction). These realisations correspond to four different Clenshaw-Curtis quadrature points. The number of fingers, their shapes, location and propagation are different. This fact makes it difficult to compute and to interpret the mean value, the variance and other statistics.
The porosity fields, corresponding to Fig. 8a,b are shown in Fig. 9a,b.
Four realisations of the porosity field in (25)
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Litvinenko, A., Logashenko, D., Tempone, R., Wittum, G., Keyes, D. (2021). Propagation of Uncertainties in Density-Driven Flow. In: Bungartz, HJ., Garcke, J., Pflüger, D. (eds) Sparse Grids and Applications - Munich 2018. Lecture Notes in Computational Science and Engineering, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-81362-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-81362-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81361-1
Online ISBN: 978-3-030-81362-8
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)