Skip to main content

Propagation of Uncertainties in Density-Driven Flow

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 144)

Abstract

Accurate modeling of contamination in subsurface flow and water aquifers is crucial for agriculture and environmental protection. Here, we demonstrate a parallel algorithm to quantify the propagation of uncertainty in the dispersal of pollution in subsurface flow. Specifically, we consider the density-driven flow and estimate how uncertainty from permeability and porosity propagates to the solution. We take a two-dimensional Elder-like problem as a numerical benchmark, and we use random fields to model our limited knowledge on the porosity and permeability. We use the well-known low-cost generalized polynomial chaos (gPC) expansion surrogate model, where the gPC coefficients are computed by projection on sparse tensor grids. The numerical solver for the deterministic problem is based on the multigrid method and is run in parallel. Computation of high-dimensional integrals over the parametric space is done in parallel too.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.hpc.kaust.edu.sa/content/shaheen-ii.

  2. 2.

    https://github.com/UG4/ughub.

References

  1. R. Askey and J. Wilson. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Providence, R.I., U.S.A. : American Mathematical Society, 1985.

    Google Scholar 

  2. I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal., 45(3):1005–1034 (electronic), 2007.

    Google Scholar 

  3. I. Babuška, R. Tempone, and G. Zouraris. Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM Journal on Numerical Analysis, 42(2):800–825, 2004.

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. J. Bäck, F. Nobile, L. Tamellini, and R. Tempone. Stochastic spectral Galerkin and collocation methods for pdes with random coefficients: a numerical comparison. In Spectral and High Order Methods for Partial Differential Equations, pages 43–62. Springer, 2011.

    Google Scholar 

  5. V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpolation on sparse grids. Advances in Computational Mathematics, 12(4):273–288, 2000.

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. J. Bear. Dynamics of fluid in Porous Media. Dover Publications, INC. New York, 1972.

    MATH  Google Scholar 

  7. J. Bear. Hydraulics of Groundwater. Dover Publications. Inc., Mineola, 1979.

    Google Scholar 

  8. J. Bear and Y. Bachmat. Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic Publishers, Dordrecht, Boston, London, 1990.

    CrossRef  MATH  Google Scholar 

  9. G. Blatman and B. Sudret. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probabilistic Engineering Mechanics, 25(2):183–197, 2010.

    CrossRef  Google Scholar 

  10. F. Bode, T. Ferré, N. Zigelli, M. Emmert, and W. Nowak. Reconnecting stochastic methods with hydrogeological applications: A utilitarian uncertainty analysis and risk assessment approach for the design of optimal monitoring networks. Water Resources Research, 54(3):2270–2287, 2018.

    CrossRef  Google Scholar 

  11. M. Bompard, J. Peter, and J.-A. Désidéri. Surrogate models based on function and derivative values for aerodynamic global optimization. In Fifth European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, Lisbon, Portugal, 2010.

    Google Scholar 

  12. H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147–269, 2004.

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. R. E. Caflisch. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica, 7:1–49, 1998.

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. J. Carrera. An overview of uncertainties in modelling groundwater solute transport. Journal of Contaminant Hydrology, 13(1):23–48, 1993. Chemistry and Migration of Actinides and Fission Products.

    Google Scholar 

  15. J.-P. Chiles and P. Delfiner. Geostatistics: modeling spatial uncertainty, volume 497. John Wiley & Sons, 2009.

    MATH  Google Scholar 

  16. A. Chkifa, A. Cohen, and C. Schwab. Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. Journal de Mathematiques Pures et Appliques, 103(2):400–428, 2015.

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. C. W. Clenshaw and A. R. Curtis. A method for numerical integration on an automatic computer. Numerische Mathematik, 2(1):197–205, Dec 1960.

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. P. Conrad and Y. Marzouk. Adaptive smolyak pseudospectral approximations. SIAM Journal on Scientific Computing, 35(6):A2643–A2670, 2013.

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. P. Constantine, M. Eldred, and E. Phipps. Sparse pseudospectral approximation method. Computer Methods in Applied Mechanics and Engineering, 229-232:1–12, 2012.

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. A. Costa. Permeability-porosity relationship: A reexamination of the kozeny-carman equation based on a fractal pore-space geometry assumption. Geophysical Research Letters, 33(2), 2006.

    Google Scholar 

  21. C. Cremer and T. Graf. Generation of dense plume fingers in saturated–unsaturated homogeneous porous media. Journal of Contaminant Hydrology, 173:69–82, 2015.

    CrossRef  Google Scholar 

  22. H.-J.-G. Diersch and O. Kolditz. Variable-density flow and transport in porous media: approaches and challenges. In Wasy Software FEFLOWⒸ - Finite Element Subsurface flow and Transport Simulation System, volume 2. Wasy GmbH, 2005.

    Google Scholar 

  23. S. Dolgov, B. Khoromskij, A. Litvinenko, and H. Matthies. Computation of the response surface in the tensor train data format. arXiv:1406.2816, 2014.

    Google Scholar 

  24. S. Dolgov, B. Khoromskij, A. Litvinenko, and H. Matthies. Polynomial chaos expansion of random coefficients and the solution of stochastic partial differential equations in the tensor train format. SIAM/ASA Journal on Uncertainty Quantification, 3(1):1109–1135, 2015.

    CrossRef  MathSciNet  MATH  Google Scholar 

  25. A. Doostan, A. Validi, and G. Iaccarino. Non-intrusive low-rank separated approximation of high-dimensional stochastic models. Comput. Methods Appl. Mech. Engrg., (263):42–55, 2013.

    CrossRef  MathSciNet  MATH  Google Scholar 

  26. B. Eisfeld, H. Barnewitz, W. Fritz, and F. Thiele. Management and Minimisation of Uncertainties and Errors in Numerical Aerodynamics - Results of the German collaborative project MUNA. Springer, 2013.

    Google Scholar 

  27. J. Elder, C. Simmons, H.-J. Diersch, P. Frolkovič, E. Holzbecher, and K. Johannsen. The Elder problem. Fluids, 2:11, 2017.

    CrossRef  Google Scholar 

  28. O. Ernst, A. Mugler, H.-J. Starkloff, and E. Ullmann. On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2):317–339, 2012.

    CrossRef  MathSciNet  MATH  Google Scholar 

  29. M. Espig, W. Hackbusch, A. Litvinenko, H. Matthies, and P. Waehnert. Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats. Computers and Mathematics with Applications, 67(4):818–829, 2014. High-order Finite Element Approximation for Partial Differential Equations.

    Google Scholar 

  30. M. Espig, W. Hackbusch, A. Litvinenko, H. Matthies, and E. Zander. Efficient analysis of high dimensional data in tensor formats. In Sparse Grids and Applications, pages 31–56. Springer, 2013.

    Google Scholar 

  31. M. Espig, W. Hackbusch, A. Litvinenko, H. Matthies, and E. Zander. Post-processing of high-dimensional data. arXiv:1906.05669, accepted to JCP, pages 1–32, 2019.

    Google Scholar 

  32. Y. Fan, C. Duffy, and D. Oliver. Density-driven groundwater flow in closed desert basins: field investigations and numerical experiments. Journal of Hydrology, 196(1):139–184, 1997.

    CrossRef  Google Scholar 

  33. P. Frolkovič. Consistent velocity approximation for density driven flow and transport. In R. Van Keer and at al., editors, Advanced Computational Methods in Engineering, Part 2: Contributed papers, pages 603–611, Maastricht, 1998. Shaker Publishing.

    Google Scholar 

  34. P. Frolkovič. Maximum principle and local mass balance for numerical solutions of transport equation coupled with variable density flow. Acta Mathematica Universitatis Comenianae, 1(68):137–157, 1998.

    MathSciNet  MATH  Google Scholar 

  35. P. Frolkovič and P. Knabner. Consistent velocity approximations in finite element or volume discretizations of density driven flow. In A. A. Aldama and et al., editors, Computational Methods in Water Resources XI, pages 93–100, Southhampten, 1996. Computational Mechanics Publication.

    Google Scholar 

  36. T. Gerstner and M. Griebel. Numerical integration using sparse grids. Numer. Algorithms, 18(3-4):209–232, 1998.

    CrossRef  MathSciNet  MATH  Google Scholar 

  37. R. Ghanem, H. Owhadi, and D. Higdon. Handbook of uncertainty quantification. Springer, 06 2017.

    Google Scholar 

  38. L. Giraldi, A. Litvinenko, D. Liu, H. Matthies, and A. Nouy. To be or not to be intrusive? the solution of parametric and stochastic equations—the “plain vanilla” galerkin case. SIAM Journal on Scientific Computing, 36(6):A2720–A2744, 2014.

    CrossRef  MathSciNet  MATH  Google Scholar 

  39. A. A. Giunta, M. S. Eldred, and J. P. Castro. Uncertainty quantification using response surface approximation. In 9th ASCE Specialty Conference on Probabolistic Mechanics and Structural Reliability, Albuquerque, New Mexico, USA, 2004.

    Google Scholar 

  40. I. Graham, F. Y. Kuo, J. Nichols, R. Scheichl, C. Schwab, and I. H. Sloan. Quasi-monte carlo finite element methods for elliptic pdes with lognormal random coefficients. Numerische Mathematik, pages 1–40, 2015.

    Google Scholar 

  41. I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. Sloan. Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys., 230(10):3668–3694, 2011.

    CrossRef  MathSciNet  MATH  Google Scholar 

  42. M. Griebel. Sparse grids and related approximation schemes for higher dimensional problems. In Foundations of computational mathematics, Santander 2005, volume 331 of London Math. Soc. Lecture Note Ser., pages 106–161. Cambridge Univ. Press, Cambridge, 2006.

    Google Scholar 

  43. W. Hackbusch. Multi-Grid Methods and Applications. Springer, Berlin, 1985.

    CrossRef  MATH  Google Scholar 

  44. W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Springer, New-York, 1994.

    CrossRef  MATH  Google Scholar 

  45. S. Hosder, R. Walters, and R. Perez. A non-intrusive polynomial chaos method for uncertainty propagation in cfd simulations. 44th AIAA Aerospace Sciences Meeting and Exhibit, January 2006, Reno, Nevada, (AIAA 2006-891):209–236, 2006.

    Google Scholar 

  46. S. Joe and F. Kuo. Constructing sobol sequences with better two-dimensional projections. SIAM Journal on Scientific Computing, 30(5):2635–2654, 2008.

    CrossRef  MathSciNet  MATH  Google Scholar 

  47. K. Johannsen. On the validity of the boussinesq approximation for the Elder problem. Computational Geosciences, 7(3):169–182, Sep 2003.

    CrossRef  MathSciNet  MATH  Google Scholar 

  48. N. H. Kim, H. Wang, and N. V. Queipo. Efficient shape optimization under uncertainty using polynomial chaos expansions and local sensitivities. AIAA journal, 44(5):1112–1116, 2006.

    CrossRef  Google Scholar 

  49. A. Klimke. Sparse grid interpolation toolbox,www.ians.uni-stuttgart.de/spinterp/. 2008.

    Google Scholar 

  50. H. Kobus. Soil and groundwater contamination and remediation technology in europe. In K. Sato and Y. Iwasa, editors, Groundwater Updates, pages 3–8, Tokyo, 2000. Springer Japan.

    Google Scholar 

  51. B. Koohbor, M. Fahs, B. Ataie-Ashtiani, B. Belfort, C. T. Simmons, and A. Younes. Uncertainty analysis for seawater intrusion in fractured coastal aquifers: Effects of fracture location, aperture, density and hydrodynamic parameters. Journal of Hydrology, 571:159–177, 2019.

    CrossRef  Google Scholar 

  52. F. Y. Kuo, C. Schwab, and I. H. Sloan. Multi-level quasi-Monte Carlo finite element methods for a class of elliptic pdes with random coefficients. Foundations of Computational Mathematics, pages 1–39, 2015.

    Google Scholar 

  53. O. P. Le Maître and O. M. Knio. Spectral methods for uncertainty quantification. Series: Scientific Computation. Springer, New York, 2010.

    Google Scholar 

  54. A. Litvinenko. Partial inversion of elliptic operator to speed up computation of likelihood in Bayesian inference. arXiv:1708.02207, pages 1–31, 2017.

    Google Scholar 

  55. A. Litvinenko, D. Logashenko, R. Tempone, G. Wittum, and D. Keyes. Solution of the 3D density-driven groundwater flow problem with uncertain porosity and permeability. GEM - International Journal on Geomathematics, 11(10), 2019.

    Google Scholar 

  56. A. Litvinenko and H. Matthies. Uncertainties quantification and data compression in numerical aerodynamics. PAMM, 11(1):877–878, 2011.

    CrossRef  Google Scholar 

  57. A. Litvinenko, H. Matthies, and T. A. El-Moselhy. Sampling and low-rank tensor approximation of the response surface. In J. Dick, F. Y. Kuo, G. W. Peters, and I. H. Sloan, editors, Monte Carlo and Quasi Monte Carlo Methods 2012, volume 65 of Springer Proceedings in Mathematics & Statistics, pages 535–551. Springer Berlin Heidelberg, 2013.

    CrossRef  MATH  Google Scholar 

  58. D. Liu and S. Görtz. Efficient quantification of aerodynamic uncertainty due to random geometry perturbations. In A. Dillmann et al., editors, New Results in Numerical and Experimental Fluid Mechanics IX, pages 65–73. Springer International Publishing, 2014.

    Google Scholar 

  59. D. Liu, A. Litvinenko, C. Schillings, and V. Schulz. Quantification of airfoil geometry-induced aerodynamic uncertainties—comparison of approaches. SIAM/ASA Journal on Uncertainty Quantification, 5(1):334–352, 2017.

    CrossRef  MathSciNet  MATH  Google Scholar 

  60. G. J. A. Loeven, J. A. S. Witteveen, and H. Bijl. A probabilistic radial basis function approach for uncertainty quantification. In Proceedings of the NATO RTO-MP-AVT-147 Computational Uncertainty in Military Vehicle design symposium, 2007.

    Google Scholar 

  61. L. Mathelin, M. Y. Hussaini, and T. A. Zang. Stochastic approaches to uncertainty quantification in CFD simulations. Numer. Algorithms, 38(1-3):209–236, 2005.

    CrossRef  MathSciNet  MATH  Google Scholar 

  62. H. Matthies. Uncertainty quantification with stochastic finite elements. In E. Stein, R. de Borst, and T. R. J. Hughes, editors, Encyclopedia of Computational Mechanics. John Wiley & Sons, Chichester, 2007.

    Google Scholar 

  63. H. Matthies, E. Zander, B. Rosic, and A. Litvinenko. Computational approaches to inelastic media with uncertain parameters. Advanced Modeling and Simulation in Engineering Sciences, 3(24):28–43, 2016.

    Google Scholar 

  64. H. G. Matthies and A. Keese. Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Computer Methods in Applied Mechanics and Engineering, 194(12-16):1295–1331, 2005.

    CrossRef  MathSciNet  MATH  Google Scholar 

  65. H. G. Matthies, E. Zander, B. V. Rosić, A. Litvinenko, and O. Pajonk. Inverse problems in a bayesian setting. In Ibrahimbegovic A. (eds) Computational Methods for Solids and Fluids. Computational Methods in Applied Sciences, volume 41, pages 245–286. Springer, Cham, 2016.

    Google Scholar 

  66. H. Najm. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annual Review of Fluid Mechanics, 41(1):35–52, 2009.

    CrossRef  MathSciNet  MATH  Google Scholar 

  67. F. Nobile, L. Tamellini, F. Tesei, and R. Tempone. An adaptive sparse grid algorithm for elliptic PDEs with log-normal diffusion coefficient. MATHICSE Technical Report 04, 2015.

    Google Scholar 

  68. F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM Journal on Numerical Analysis, 46(5):2309–2345, 2008.

    CrossRef  MathSciNet  MATH  Google Scholar 

  69. E. Novak and K. Ritter. High dimensional integration of smooth functions over cubes. Numerische Mathematik, 75(1):79–97, Nov 1996.

    CrossRef  MathSciNet  MATH  Google Scholar 

  70. E. Novak and K. Ritter. The curse of dimension and a universal method for numerical integration. In Multivariate approximation and splines (Mannheim, 1996), volume 125 of Internat. Ser. Numer. Math., pages 177–187. Birkhäuser, Basel, 1997.

    Google Scholar 

  71. E. Novak and K. Ritter. Simple cubature formulas with high polynomial exactness. Constr. Approx., 15(4):499–522, 1999.

    CrossRef  MathSciNet  MATH  Google Scholar 

  72. W. Nowak. Geostatistical methods for the identification of flow and transport parameters in the subsurface. Ph.D. Thesis, University of Stuttgart, Germany, Heft 134, 2004.

    Google Scholar 

  73. K. Petras. Smolpack—a software for Smolyak quadrature with delayed Clenshaw-Curtis basis-sequence. http://www-public.tu-bs.de:8080/ petras/software.html.

    Google Scholar 

  74. V. Post and G. Houben. Density-driven vertical transport of saltwater through the freshwater lens on the island of baltrum (germany) following the 1962 storm flood. Journal of Hydrology, 551:689–702, 2017. Investigation of Coastal Aquifers.

    Google Scholar 

  75. I. Radović, I. Sobol, and R. Tichy. Quasi-monte carlo methods for numerical integration: Comparison of different low discrepancy sequences. Monte Carlo Methods and Applications, 2(1):1–14, 1996.

    CrossRef  MathSciNet  MATH  Google Scholar 

  76. S. Reiter, D. Logashenko, A. Vogel, and G. Wittum. Mesh generation for thin layered domains and its application to parallel multigrid simulation of groundwater flow. submitted to Comput. Visual Sci., 2017.

    Google Scholar 

  77. S. Reiter, A. Vogel, I. Heppner, M. Rupp, and G. Wittum. A massively parallel geometric multigrid solver on hierarchically distributed grids. Computing and Visualization in Science, 16(4):151–164, August 2013.

    CrossRef  MATH  Google Scholar 

  78. B. Rosić, A. Kučerová, J. Sýkora, O. Pajonk, A. Litvinenko, and H. Matthies. Parameter identification in a probabilistic setting. Engineering Structures, 50(0):179–196, 2013. Engineering Structures: Modelling and Computations (special issue IASS-IACM 2012).

    Google Scholar 

  79. Y. Rubin. Applied stochastic hydrogeology. Oxford University Press, 2003.

    CrossRef  Google Scholar 

  80. A. Schneider, K.-P. Kröhn, and A. Püschel. Developing a modelling tool for density-driven flow in complex hydrogeological structures. Comput. Visual Sci., 15(4):163–168, 2012.

    CrossRef  MATH  Google Scholar 

  81. M. Sinsbeck and W. Nowak. An optimal sampling rule for nonintrusive polynomial chaos expansions of expensive models. International Journal for Uncertainty Quantification, 5(3):275–295, 2015.

    CrossRef  MathSciNet  Google Scholar 

  82. S. A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov. Math. Dokl., 4:240–243, 1963.

    MATH  Google Scholar 

  83. W. C. Snyder. Accuracy estimation for quasi-monte carlo simulations. Mathematics and Computers in Simulation, 54(1–3):131–143, 2000.

    CrossRef  MathSciNet  Google Scholar 

  84. T. Sullivan. Introduction to Uncertainty Quantification. Springer, 2017.

    MATH  Google Scholar 

  85. D. Tartakovsky. Assessment and management of risk in subsurface hydrology: A review and perspective. Advances in Water Resources, 51:247–260, 2013. 35th Year Anniversary Issue.

    Google Scholar 

  86. A. Teckentrup, P. Jantsch, C. Webster, and M. Gunzburger. A multilevel stochastic collocation method for partial differential equations with random input data. SIAM/ASA Journal on Uncertainty Quantification, 3(1):1046–1074, 2015.

    CrossRef  MathSciNet  MATH  Google Scholar 

  87. L. Tenorio. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2017.

    CrossRef  MATH  Google Scholar 

  88. R. A. Todor and C. Schwab. Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal., 27(2):232–261, 2007.

    CrossRef  MathSciNet  MATH  Google Scholar 

  89. E. Ullmann. A Kronecker product preconditioner for stochastic Galerkin finite element discretizations. SIAM J. Scientific Computing, 32(2):923–946, 2010.

    CrossRef  MathSciNet  MATH  Google Scholar 

  90. E. Ullmann, H. Elman, and O. G. Ernst. Efficient iterative solvers for stochastic Galerkin discretizations of log-transformed random diffusion problems. SIAM Journal on Scientific Computing, 34(2):A659–A682, 2012.

    CrossRef  MathSciNet  MATH  Google Scholar 

  91. H. Vereecken, A. Schnepf, J. Hopmans, M. Javaux, D. Or, T. Roose, J. Vanderborght, M. Young, W. Amelung, M. Aitkenhead, S. Allison, S. Assouline, P. Baveye, M. Berli, N. Brüggemann, P. Finke, M. Flury, T. Gaiser, G. Govers, T. Ghezzehei, P. Hallett, H. Hendricks Franssen, J. Heppell, R. Horn, J. Huisman, D. Jacques, F. Jonard, S. Kollet, F. Lafolie, K. Lamorski, D. Leitner, A. McBratney, B. Minasny, C. Montzka, W. Nowak, Y. Pachepsky, J. Padarian, N. Romano, K. Roth, Y. Rothfuss, E. Rowe, A. Schwen, J. imnek, A. Tiktak, J. Van Dam, S. van der Zee, H. Vogel, J. Vrugt, T. Wöhling, and I. Young. Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone Journal, 15(5):vzj2015.09.0131, 2016.

    Google Scholar 

  92. A. Vogel, S. Reiter, M. Rupp, A. Nägel, and G. Wittum. Ug 4: A novel flexible software system for simulating pde based models on high performance computers. Computing and Visualization in Science, 16(4):165–179, August 2013.

    CrossRef  MATH  Google Scholar 

  93. C. Voss and W. Souza. Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resources Research, 23(10):1851–1866, 1987.

    CrossRef  Google Scholar 

  94. N. Wiener. The homogeneous chaos. American Journal of Mathematics, 60:897–936, 1938.

    CrossRef  MathSciNet  MATH  Google Scholar 

  95. Y. Xie, C. Simmons, A. Werner, and H.-J. G. Diersch. Prediction and uncertainty of free convection phenomena in porous media. Water Resources Research, 48(2), 2012.

    Google Scholar 

  96. D. Xiu. Fast numerical methods for stochastic computations: A review. Commun. Comput. Phys., 5, No. 2-4:242–272, 2009.

    Google Scholar 

  97. D. Xiu. Numerical methods for stochastic computations: a spectral method approach. Princeton university press, 2010.

    CrossRef  MATH  Google Scholar 

  98. D. Xiu and G. Karniadakis. Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of Computational Physics, 187(1):137–167, 2003.

    CrossRef  MathSciNet  MATH  Google Scholar 

  99. D. Xiu and G. E. Karniadakis. Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Meth. Appl. Mech. Eng., 191:4927–4948, 2002.

    CrossRef  MathSciNet  MATH  Google Scholar 

  100. D. Xiu and G. E. Karniadakis. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 24:619–644, 2002.

    CrossRef  MathSciNet  MATH  Google Scholar 

  101. D. Xiu, D. Lucor, C.-H. Su, and G. E. Karniadakis. Stochastic modeling of flow-structure interactions using generalized polynomial chaos. 124:51–69, 2002.

    Google Scholar 

  102. B. Zhaojun, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM. Philadelphia, 2000.

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the King Abdullah University of Science and Technology (KAUST) and by the Alexander von Humboldt Foundation. We used the resources of the Supercomputing Laboratory at KAUST, under the development project k1051. We would like to thank the KAUST core lab for the assistance with Shaheen II parallel supercomputer, developers of the ug4 simulation framework from Frankfurt University, two anonymous reviewers, and the associate editor for their careful reading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Litvinenko .

Editor information

Editors and Affiliations

Appendix A: Difficulties in Computing Statistics

Appendix A: Difficulties in Computing Statistics

We consider the following uncertain porosity

(25)

with 3 stochastic parameters θ 1, θ 2, θ 3 ∼ U[−1, 1], x ∈ [0, 600], y ∈ [0, 150]. Figure 8 shows four different realizations of the solution (the mass fraction). These realisations correspond to four different Clenshaw-Curtis quadrature points. The number of fingers, their shapes, location and propagation are different. This fact makes it difficult to compute and to interpret the mean value, the variance and other statistics.

Fig. 8
figure 8

Four different realizations of the mass fraction: with (a) 5, (b) 4.5, (c) 4, (d) 4 fingers. For all realisations c ∈ [0, 1]

The porosity fields, corresponding to Fig. 8a,b are shown in Fig. 9a,b.

Fig. 9
figure 9

Four realisations of the porosity field in (25)

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Litvinenko, A., Logashenko, D., Tempone, R., Wittum, G., Keyes, D. (2021). Propagation of Uncertainties in Density-Driven Flow. In: Bungartz, HJ., Garcke, J., Pflüger, D. (eds) Sparse Grids and Applications - Munich 2018. Lecture Notes in Computational Science and Engineering, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-81362-8_5

Download citation