Skip to main content

Aspects of Wood Utilization and Material Selection

  • Chapter
  • First Online:
Springer Handbook of Wood Science and Technology

Part of the book series: Springer Handbooks ((SHB))

Abstract

The chapter addresses issues of the interrelation of forest aspects and wood properties as a basis for industrial and engineering design with wood. Typical challenges of the utilization of wood as an engineering material are addressed such as the orthotropic structure and inhomogeneity of the raw material wood, based on the various growth patterns of timber. The latter as one of the most restricting features in wood utilization. Strategies for increasing homogeneity of wood-based materials are provided, as well as approaches for industrial and engineering design and the path from wood-based material properties to engineering design values. This is also the basis for wood material selection approaches.

Once the products come to their end of life, discharging, waste management, and recycling becomes important. A survey of recovery and recycling of wood is provided, and the importance of a proper design for recycling is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delmonte, J.: Origins of Materials and Processes. Technomic Publishing Company, Pennsylvania (1985)

    Google Scholar 

  2. Derry, T.K., Williams, T.I.: A Short History of Technology. Oxford University Press, Oxford (1960)

    Google Scholar 

  3. Ashby, M.F.: Materials and the Environment: Eco-Informed Material Choice. Butterworth Heinemann, Oxford (2009)

    Google Scholar 

  4. Gordon, J.E.: The New Science of Strong Materials. Penguin Books, London (1976)

    Google Scholar 

  5. Miodownik, M.: Stuff Matters: Exploring the Marvelous Materials that Shape Our Man-Made World. Houghten Mifflin Harcourt, Boston (2014)

    Google Scholar 

  6. Ashby, M.F.: Materials Selection in Mechanical Design. Butterworth Heinemann, Oxford (2003)

    Google Scholar 

  7. Ashby, M., Johnson, K.: Materials and Design. The Art an Science of Material Selection in Product Design. Elsevier Butterworth-Heinemann, Oxford (2002)

    Google Scholar 

  8. Perlin, J.A.: Forest Journey. The Role of Wood in the Development of Civilization. Harvard University Press, Cambridge (1889)

    Google Scholar 

  9. Youngquist, W.G., Fleischer, H.O.: Wood in American Life. 1776–2076. Forest Products Research Society, Madison, Wisconsin (1977)

    Google Scholar 

  10. Radkau, J.: Holz. Wie ein Naturstoff Geschichte schreibt. oekom verlag, München (2017)

    Google Scholar 

  11. Radkau, J.: Wood. A History. Polity Press, Cambridge (2012)

    Google Scholar 

  12. Grabner, M.: Werkholz. Eigenschaften und historische Nutzung 60 mitteleuropäischer Baum- und Straucharten. Verlag Dr. Kessel, Remangen-Oberwinter (2017)

    Google Scholar 

  13. Oates, P.B.: The Story of Western Furniture. New Amsterdam Books. c/o Ivan R. Dee, Publisher, Chicago (1998)

    Google Scholar 

  14. Ashby, M.F., Jones, D.R.H.: Engineering Materials 1. An Introduction to Properties, Applications and Design. Elsevier Butterworth-Heinemann, Oxford (2005)

    Google Scholar 

  15. Ashby, M.F., Gibson, L.J., Wegst, U., Olive, R.: Proc. R. Soc. Lond. A. 450, 123–140 (1995)

    Google Scholar 

  16. Schmidhüsen, F., Kaiser, B., Schmidhauser, A., Mellinghoff, S., Perchthaler, K., Kammerhofer, A.: Entrepreneurship and Management in Forestry and Wood Processing. Principles of Business, Economics and Management Processes. Routledge (2016)

    Google Scholar 

  17. Hansen, E., Panwar, R., Vlosky, R.: The Global Forest Sector. Changes, Practices, and Prospects. Taylor & Francis Group, LLC, Boca Raton (2014)

    Google Scholar 

  18. Ashby, M.F.: Materials and the Environment: Eco-Informed Material Choice, 2nd edn. Elsevier Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  19. Bhamra, T., Lofthouse, V.: Design for Sustainability; a Practical Approach. Routledge/Tayler & Francis Group, London (2016)

    Book  Google Scholar 

  20. Ashby, M.F., Shercliff, H., Cebon, D.: Materials: Engineering, Science, Processing and Design, 4th edn. Butterworth-Heinemann, Amsterdam (2018)

    Google Scholar 

  21. Ashby, M.F.: Materials and Sustainable Development. Butterworth-Heinemann, Amsterdam (2016)

    Google Scholar 

  22. Wegst, U.G.K., Ashby, M.F.: Philos. Mag. 84(21), 2167–2186 (2004)

    Google Scholar 

  23. Fratzl, P.: J.R. Soc. Inter. 4, 637–642 (2007)

    Google Scholar 

  24. Paulitsch, M. Springer-Verlag, Berlin (1989)

    Google Scholar 

  25. EU: Bioeconomy: The European way to use our natural resources. Action plan 2018. European commission. Directorate-General for Research and Innovation, Brussels (2018)

    Google Scholar 

  26. Carus, M., Raschka, A.: Renewable carbon is key to a sustainable and future-oriented chemical industry. Nova paper‚ Paper No. 10 on bio- and CO2-based economy, nova-Institut GmbH, Hirt, Germany, (2018)

    Google Scholar 

  27. Wolfslehner, B., Linser, S., Pülzl, H., Bastrup-Birk, A., Camia, A., Marchetti, M.: Forest Bioeconomy – A New Scope for Sustainability Indicators. From Science to Policy 4. European Forest Institute (2016)

    Google Scholar 

  28. EN 16575, Bio-based products – Vocabulary, (CEN: Brussels, 2014)

    Google Scholar 

  29. Wegst, U.G.K., Ashby, M.F.: The development and use of a methodology for the environmentally-conscious selection of materials. Proceedings. The Third World conference on Integrated Design and Process Technology (IDPT), vol. 5, pp. 88–93. Berlin (1998)

    Google Scholar 

  30. Ashby, M.F.: Materials and the Environment. Eco-Informed Material Choice. Butterworth-Heinemann, Elsevier, Burlington (2009)

    Google Scholar 

  31. Dinwoodie, J.M.: Wood. Nature’s Cellular, Polymeric Fibre-Composite. The Institute of Metals, London (1989)

    Google Scholar 

  32. Harrington, J.J. (2002) Hierarchical modelling of softwood hygro-elastic properties. PhD Thesis, University of Canterbury, NZ

    Google Scholar 

  33. Gibson, L.J.: J. R. Soc. Interface. 9(76), 2749–2766 (2012)

    Google Scholar 

  34. Plomion, C., Leprovost, G., Stokes, A.: Plant Physiol. 127, 1513–1523 (2001)

    Google Scholar 

  35. Barnett, J.R., Jeronimidis, G.: Wood Quality and Its Biological Basis. Blackwell Publishing Ltd., Oxford (2003)

    Google Scholar 

  36. Baas, P., Beeckman, H., Cufar, K., Micco De, V.: IAWA J. 37(2), 121–368 (2016)

    Google Scholar 

  37. Fratzl, P., Weinkamer, R.: Prog. Mater. Sci. 52, 1263–1334 (2007)

    Google Scholar 

  38. Beech, E., Rivers, M., Oldfield, S., Smith, P.P.: J. Sustain. For. 36(5), 454–489 (2017)

    Google Scholar 

  39. Borgström, E. (ed.): Design of Timber Structures. Structural Aspects of Timber Construction, Vols. 1–3. Swedish Forest Industries Federation, Swedish Wood, Stockholm (2016)

    Google Scholar 

  40. Berglund, L., Rowell, R.M.: Wood composites. In: Rowell, R.M., Caldeirea, F., Rowell, J.K. (eds.) Sustainable Development in the Forest Products Industry, pp. 114–126. Universidade Fernando Pessoa, Porto (2010)

    Google Scholar 

  41. Teischinger, A.: Wood Des. Focus. 26(4), 23–26 (2016) ISSN 1066-5757

    Google Scholar 

  42. Bliem, P., Frömel-Frybort, S., van Herwijnen, H.W.G., Pinkl, S., Krenke, T., Mauritz, R., Konnerth, J.: J. Adhes. 96(1–4), 144–164 (2019)

    Google Scholar 

  43. Li, Y., Fu, Q., Yang, X., Berglund, L.: Phil. Trans. R. Soc. A. 376, 20170182 (2018)

    Google Scholar 

  44. Kellomäki, S.: Novel Methods for Tailoring Wood Properties. Wood Wisdom Closing Seminar, Dipoli (2002)

    Google Scholar 

  45. EN 1927 ff, Qualitative classification of softwood round timber. CEN: Brussels, 2008

    Google Scholar 

  46. EN 1316 ff, Hardwood round timber – Qualitative classification. CEN: Brussels, 2013

    Google Scholar 

  47. EN 1315 ff, Dimensional classification of round timber. CEN: Brussels, 2010

    Google Scholar 

  48. Hecker, M., Ressmann, J., Becker, G., et al.: Holz Roh Werkst. 58(3), 168–176 (2000). https://doi.org/10.1007/s001070050408

  49. Murphy, G., Cown, D.: Scand. J. For. Res. 30(8), 757–770 (2015). https://doi.org/10.1080/02827581.2015.1055791

  50. Jones, D., Brischke, C. (eds.): Performance of Bio-Based Building Materials. Woodhead Publishing, Elsevier, Duxford (2017)

    Google Scholar 

  51. Kellomäki, S., Ikonen, V.-P., Peltola, H., Kolström, T.: Ecol. Model. 122(1999), 117–134 (1999)

    Google Scholar 

  52. Teischinger, A.: Starkholzprodukte und Marktchancen. In: Senitza, E. (ed.) Zur Starkholzfrage in Österreich, pp. 125–132. Österreichisches Holzforschungsinstitut (Holzforschung Austria), A-1030 Wien (1992)

    Google Scholar 

  53. Ek, A.R., S.R. Shifley and T.E. Burk (eds.) (1988) Forest growth modeling and prediction, USDA FOR. Serv. Gen. Tech. Rep. NC-120. 1149 p

    Google Scholar 

  54. Aaron, R.W., Hann, D.W., Kershaw, J.A., Vanclay, J.K.: Forest Growth and Yield Modeling. John Wiley & Sons, Ltd. Print ISBN:9780470665008 |Online ISBN:9781119998518. https://doi.org/10.1002/9781119998518

  55. Dykstra, D.P., Monserud, R.A. (eds.): Forest growth and timber quality: Crown models and simulation methods for sustainable forest management. In: Proceedings of an International Conference, USDA, United States Department of Agriculture, Forest Service, (2009)

    Google Scholar 

  56. Ikonen, V.-P., Peltola, H., Wilhelmsson, L., Kilpeläinen, A., Väisänen, H., Nuutinen, T., Kellomäki, S.: For. Ecol. Manag. 256(6), 1356–1371 (2008)

    Google Scholar 

  57. Mäkelä, A., Grace, J.C., Deckmyn, G., Kantola, A., Campioli, M.: For. Sys. 19(SI), 48–68 (2010)

    Google Scholar 

  58. Charpentier, P., Chubinsky, A., Bombardier, V., Longuetaud, F., Mothe, F., et al.: (Actes Forêts de l’Académie technique Saint-Pétersbourg). 202, 158–167 (2013)

    Google Scholar 

  59. Pinto, I., Pereira, H., Usenius, A: Analysis of log shape and internal knots in twenty Maritime pine ( Pinus pinaster Ait.) stems based on visual scanning and computer aided reconstruction. Annals of Forest Science – ANN FOR SCI. 60 (2003)

    Google Scholar 

  60. Seifert, T.: Integration of wood quality, grading and bucking in forest growth models sensitive to silvicultural treatment. Dissertation (in German), Technische Universität München, (2003)

    Google Scholar 

  61. Pretzsch, H., Rais, A.: Wood Sci. Technol. 50, 845–880 (2016). https://doi.org/10.1007/s00226-016-0827-z

  62. FAO 2017: Forest products statistics. Forest products classification and definitions – New proposal. Working Paper No. 14. FAO, Global Strategy, Rome

    Google Scholar 

  63. FAO: Global Forest Products, Facts and Figures 2016. FAO, Food and Agricultural Organization of the United Nations, Geneva (2018)

    Google Scholar 

  64. Nyrud, A.Q., Bringslimark, T.: Wood Fiber Sci. 42, 202–218 (2010)

    Google Scholar 

  65. Teischinger, A. (ed.): Interaktion Mensch Und Holz (Interaction Human and Wood) LIGNOVISIONEN Band 27. University of Natural Resources and Life Sciences (BOKU), Vienna (2013)

    Google Scholar 

  66. Burnard, M.D., Kutnar, A.: Eur. J. Wood Wood Prod. 76, 1093–1100 (2015)

    Google Scholar 

  67. Augustin, S., Fell, D.: Wood as a Restorative Material in Healthcare Environments. FP Innovations, Pointe-Claire (2015)

    Google Scholar 

  68. Ikei, H., Song, C., Miyazaki, Y.: J. Wood Sci. 63, 1–23 (2017)

    Google Scholar 

  69. Burnard, M.D., Kutnar, A.: Human stress responses in office-like environments with wood furniture. Build. Res. Inf. (2019). https://doi.org/10.1080/09613218.2019.1660609

  70. Luisa Demattè, M., Zucco, G.M., Roncato, S., Gatto, P., Paulon, E., Cavalli, R., Zanet, M.: Eur. J. Wood Wood Prod. 76, 1093–1100 (2018)

    Google Scholar 

  71. Berger, G., Katz, H., Petutschnigg, A.J.: For. Prod. J. 56, 42–47 (2006)

    Google Scholar 

  72. Kotradyova, V., Teischinger, A.: Tactile interaction and contact comfort of wood and wood materials. In: 57th International Convention of the Society of Wood Science and Technology (SWST), Zvolen, 23–27 June, 2014. Society of Wood Science and Tec (2014)

    Google Scholar 

  73. Jahan, A., Ismail, M.Y., Sapuan, S.M., Mustapha, F.: Mater. Des. 31, 696–705 (2010)

    Google Scholar 

  74. Eichhorn, S., Eckardt, R., Müller, C.: Einblick in die Geschichte der Holzwerkstoffe im Maschinen- und Anlagenbau und aktuelle Möglichkeiten der angemessenen technischen Nutzung. 8tes Symposium ‚Werkstoffe aus nachwachsenden Rohstoffen‘ – Narotech Erfurt, (2010)

    Google Scholar 

  75. Ljungberg, L.: Mater. Des. 28, 466–479 (2007)

    Google Scholar 

  76. Bovea, M.D., Vidal, R.: Mater. Des. 25, 111–116 (2004)

    Google Scholar 

  77. Gonzalez-Garcia, S., Lozano, R.G., Buyo, P., Pascual, R.C., Gabarrel, X., Pons, J.R., Moreira, M.T., Feijoo, G.: J. Clean. Prod. 27, 21–23 (2012)

    Google Scholar 

  78. Ashby: Materials Selection in Mechanical Design, 4th edn. Butterworth Heinemann Publications, Elsevier (2011). ISBN: 978-1-85617-663-7

    Google Scholar 

  79. Antunes, R.A., Oliveira, M.C.L.: Mater. Des. 63, 247–256 (2014)

    Google Scholar 

  80. Huda, Z., Edi, P.: Materials selection in design of structures and engines of supersonic aircrafts: a review. Mater. Des. 46, 552–560 (2013)

    Article  CAS  Google Scholar 

  81. Nemat-Nasser, S., Sadeghi, H., Amirkhizi, A.V., Srivastava, A.: Mech. Res. Commun. 68, 65–69 (2015)

    Google Scholar 

  82. Boeing: Boeing 787 Dreamliner Completes First Flight. Boeing Press Release 15. Dec. 2009. Seattle (2009)

    Google Scholar 

  83. Hucko, M. (2013) Wendig, Fix und ein wenig filzig. Spiegel online. 16.11.2013

    Google Scholar 

  84. Sell, J.: Eigenschaften und Kenngrößen von Holzarten. Baufachverlag, Zürich (1987)

    Google Scholar 

  85. Niemz, P., Sonderegger, W.: Schweiz. Z. Forstwes. 154, 489–493 (2001)

    Google Scholar 

  86. Gibson, L.J., Ashby, M.F., Harley, B.A.: Cellular Materials in Nature and Medicine. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  87. Young, T.M., Shaffer, L.B., Guess, F.M., Bensmail, H., Leon, R.V.: For. Prod. J. 58(4), 39–48 (2008)

    Google Scholar 

  88. Shah, D.U.: Mater. Des. 62, 21–31 (2014)

    Google Scholar 

  89. Pickering, K.L., Aruan Efendy, M.G., Le, T.M.: Compos. Part A. 83, 98–112 (2016)

    Google Scholar 

  90. Gibson, L.J., Ashby, M.F.: Cellular Solids Structure and Properties, 2nd edn. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  91. Thakur, V.K., Thakur, M.K., Kessler, M.R.: Handbook of Composites from Renewable Materials. Scrivener Publishing – Wiley (2017)

    Book  Google Scholar 

  92. Camu, C.T., Aicher, S.: A stochastic Finite Element Model for Glulam Beams of Hardwoods. WCTE 2018, World Conference on Timber Engineering, 20–23 August 2018, Seoul, (2018)

    Google Scholar 

  93. Roudsari, G.M., Mohanty, A.K., Misra, M.: J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/APP.45307

  94. Thömen, H., Haselein, C.R., Humphrey, P.E.: Holz Roh Werkst. 64, 125–133 (2006)

    Google Scholar 

  95. Kain, G., Lienbacher, B., Barbu, M.C., Plank, B., Richter, K., Petutschnigg, A.: Case Studies in Nondestructive Testing and Evaluation. 6, Part B, 21–29 (2016)

    Google Scholar 

  96. Mattheck, C., Bethge, K.: Naturwissenschaften. 85, 1–10 (1998)

    Google Scholar 

  97. Müller, U., Gindl, W., Jeronimidis, G.: Trees. 20, 643–648 (2006)

    Google Scholar 

  98. Müller, U., Gindl-Altmutter, W., Keckes, J.: Trees. 32(4), 1113–1121 (2018)

    Google Scholar 

  99. Eschenauer, H.A., Olhoff, N.: Appl. Mech. Rev. 54, 331–390 (2001)

    Google Scholar 

  100. EN 1995-1-1, Eurocode 5: Design of timber structures – Part 1–1: General – Common rule and rules for buildings (consolidated version), (CEN: Brussels, 2019)

    Google Scholar 

  101. EN 1990, Eurocode – Basis of structural design (consolidated version), CEN -European Committee for Standardization, Brussels, Belgium (2013)

    Google Scholar 

  102. EN 1991-1-1, Eurocode 1: Actions on structures – Past 1–1: General Actions- Densities, self-weight, imposed loads for buildings (consolidated version), CEN -European Committee for Standardization, Brussels, Belgium (2011)

    Google Scholar 

  103. Klieger, R.: Introduction to design and design process. In: Borgström, E. (ed.) Design of Timber Structures. Structural Aspects of Timber Construction, Vol. 1, pp. 8–25. Swedish Forest Industries Federation, Swedish Wood, Stockholm (2016)

    Google Scholar 

  104. Foschi, R.O., Folz, B.R., Yao, F.Z.: Reliability-Based Design of Wood Structures. Department of Civil Engineering University, Vancouver (1989)

    Google Scholar 

  105. Schuëller, G.I.: Ermittlung von Teilsicherheitsbeiwerten der Beanspruchbarkeit im Rahmen des semi-probabilistischen Sicherheitskonzeptes – Erläuterungen zum Entwurf der ÖNORM B 4040

    Google Scholar 

  106. Freudenthal, A.M.: The safety of structures, 805–180, 1947

    Google Scholar 

  107. Mayer, M.: Die Sicherheit der Bauwerke und ihre Berechnung nach Grenzkräften anstatt nach zulässigen Spannungen. Springer, Berlin (1926)

    Google Scholar 

  108. Menezes, R.C.R., Schuëller, G.I.: Akademie Verlag. Band. 99, 173–186 (1997)

    Google Scholar 

  109. Blaß, H.J., Sandhaas, C.: Ingenieurholzbau – Grundlagen der Bemessung. KIT Scientific Publishing (2016)

    Google Scholar 

  110. Harrington, J., Jacob, M., Short, C.: Handbook on Structural Timber Design to Eurocode 5 (IS EN 1995-1-1) Rules Including Strength Capacity Tables for Structural Elements. COFORD, Dublin (2006)

    Google Scholar 

  111. Marmier, J.-P.: Eurocode 5. Design of Timber Structures = Bemessung Und Konstruktion von Holzbauten. Verlags-AG der akademischen technischen Vereine (1993)

    Google Scholar 

  112. Harris, R.J.L.: Manual for the Design of Timber Building Structures to Eurocode 5. The Institution of Structural Engineers, London (2007)

    Google Scholar 

  113. Porteous, J., Kermani, A.: Structural Timber Design to Eurocode 5. Blackwell, Oxford (2007)

    Book  Google Scholar 

  114. Blaß, H.J.: Basis of Design, Material Properties, Structural Components and Joints. Centrum Hout, Almere (1995)

    Google Scholar 

  115. Eric, B.: Design of Timber Structures. SE 102 04. ProService Kommunikation AB, Stockholm (2016)

    Google Scholar 

  116. Colling, F.: Holzbau. Grundlagen und Bemessung nach EC 5. Wiesbaden, Springer Vieweg (2016)

    Google Scholar 

  117. EN 384, Structural timber – Determination of characteristic values of mechanical properties and density. CEN -European Committee for Standardization, Brussels, Belgium (2016)

    Google Scholar 

  118. EN 408, Timber structures – Structural timber and glued laminated timber – Determination of some physical and mechanical properties. CEN -European Committee for Standardization, Brussels, Belgium (2012)

    Google Scholar 

  119. EN 14358, Timber Structures – Calculation and verifiaction of characteristic values. CEN -European Committee for Standardization, Brussels, Belgium (2016)

    Google Scholar 

  120. EN 14080, Timber structures – Glued laminated timber and glued solid timber. CEN -European Committee for Standardization, Brussels, Belgium (2013)

    Google Scholar 

  121. EN 338, Structural timber – strength classes. CEN -European Committee for Standardization, Brussels, Belgium (2016)

    Google Scholar 

  122. Harte, A., Jockwer, R., Stepinac, M., Descamps, T., Rajcic, V., Dietsch, P.: Reinforcement of timber structures – the route to standardisation. In: Jasienko, J., Nowak, T. (eds.) Structural Health Assessment of Timber Structures. DWE, Wroclaw (2015)

    Google Scholar 

  123. Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC, Brussels (2011)

    Google Scholar 

  124. EU Waste Framework Directive 2008/98/EC, European Commission, Brussels (2008)

    Google Scholar 

  125. European Commission: Closing the Loop – An EU Action Plan for the Circular Economy, Brussels (2015)

    Google Scholar 

  126. Teischinger, A., Kalcher, J., Salzger, E., Praxmarer, G., Vanek, M.: General systematic for a design for recycling-guideline for wooden windows and wood aluminium windows. In: CD-ROM Proceedings of the World Conference on Timber Engineering (WCTE 2016), TU Vienna (2016)

    Google Scholar 

  127. Höglmeier, K., Weber-Blaschke, G., Richter, K.: Resour. Conserv. Recycl. 78, 81–91 (2013)

    Google Scholar 

  128. Richter, K., Weber-Blaschke, G., Höglmeier, K.: Projekt X 38. Entwicklung rohstoffgerechter Leitlinien für das Bauen mit Holz. Abschlussbericht (2015)

    Google Scholar 

  129. Pufky-Heinrich, D., Leschinsky, M., Unkelbach, G.: Holz als Rohstoff für die chemische Industrie. Chemie & More (2012)

    Google Scholar 

  130. Emblemsvåg, J., Bras, B.: Activity-Based Cost and Environmental Management: A Different Approach to ISO 14000 Compliance. Kluwer Academic Publishers, Boston (2001)

    Book  Google Scholar 

  131. Teischinger, A.: Design for Recycling: Stoffliche Nutzung von Altholz. In: Achammer, C.M. (ed.) Refurbished Future, pp. 250–257. NWV Verlag, Wien (2011)

    Google Scholar 

  132. Garcia, C.A., Hora, G.: Waste Manag. 70, 189–197 (2017)

    Google Scholar 

  133. EEG: Federal Ministry for Economic Affairs and Energy 2016. Renewable Energy Act, Germany (2017)

    Google Scholar 

  134. German Association of Waste Wood Recyclers (BAV): Waste Wood Recycling in Germany. Principles of Wood Waste Recycling and the Categorisation of Types of Waste Wood. BAV, Berlin (2015)

    Google Scholar 

  135. Knauf, M.: Holz-Zentralblatt. 143(32), 755–756 (2017)

    Google Scholar 

  136. Kovacic, I., Honic, M., Rechberger, H., Oberwinter, L., Lengauer, K., Hagenauer, A., Glöggler, J., Meier, K.: Ed: BMVIT, Schriftenreihe 8/2019. BMVIT, Vienna (2019)

    Google Scholar 

  137. Schneider, U., Böck, M., Mötzl, H., et al.: Recyclingfähig konstruieren: Subprojekt 3 zum Leitprojekt “gugler! build & print triple zero”, 21st edn. BMVIT, Wien (2011)

    Google Scholar 

  138. Hradil P. Barriers and Opportunities of Structural Elements Re-Use: Research Report, 2014

    Google Scholar 

  139. Verein Deutscher Ingenieure (VDI): VDI 2243. Recycling-Oriented Product Development. Verein Deutscher Ingenieure. Beuth, Berlin (2002)

    Google Scholar 

  140. NSD, National Design Specification (NSD) for Wood Construction, Edition 2018. American Wood Council, Leesburg, Virginia 2017

    Google Scholar 

  141. Bartl, A.: Waste Manag. Res. 32(9 Suppl), 3–18 (2014). https://doi.org/10.1177/0734242X14541986

  142. Svilans, T., Tamke, M., Thomsen, M.R., Runberger, J., Strehlke, K., Antemann, M.: New workflows for digital timber. In: Bianconi, F., Filippucci, M. (eds.) Digital Wood Design Innovative Techniques of Representation in Architectural Design. Springer Nature Switzerland AG, Cham (2019)

    Google Scholar 

  143. Longo, B.L., Brüchert, F., Becker, G., Sauter, U.H.: Ann. For. Sci. 76 (2019)

    Google Scholar 

  144. Johansson, E., Johansson, D., Skog, J.: Comput. Electron. Agric. 96, 238–245 (2013)

    Google Scholar 

  145. Sauter, U.H., Laudon, N., Brüchert F.: Automated wood species identification by CT-technology. In: Proceedings IUFRO World Congress 2015. Salt Lake City. The International Forestry, (2014)

    Google Scholar 

  146. Breinig, L., Broman, O., Brüchert, F., Becker, G.: Wood Mater. Sci. Eng. 10(4), 319–334 (2015)

    Google Scholar 

  147. Sauter, U.H., Brüchert, F., Baumgartner, R., Laudon, N., Dold, E.G., Fink, F.: CT-Pro – Neue Produktionssysteme in der Holzindustrie auf der Basis von Hochgeschwindigkeits-CT-Scanning: Teilvorhaben 1: Entwicklung einer Produktionsstrategie zur Hochgeschwindigkeits-Computertomographie bei Holz. Schlussbericht Projekt FKZ FNR-22004410, 66 p (2014)

    Google Scholar 

  148. OECD: Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences. OECD Publishing, Paris (2018). https://doi.org/10.1787/9789264307452-en

    Book  Google Scholar 

  149. Lundqvist, S.-O., Gardiner, B.: Key products of the forest-based industries and their demands on wood raw material properties. (2011). https://doi.org/10.13140/RG.2.2.25908.86404

  150. Fürhapper, C., Habla, E., Stratev, D., Weigl, M., Dobianer, K.: Front. Built Environ. 5, 151–158 (2020). https://doi.org/10.3389/fbuil.2019.00151

  151. Teischinger, A.: Österreichische Ingenieur- und Architekten-Zeitschrift. 162(1–12), 75–80 (2017)

    Google Scholar 

  152. Belgacem, M.N., Pizzi, A.: Lignocellulosic Fibres and Wood Handbook. Scrivener Publishing/Wiley, Hoboken/Salem (2019)

    Google Scholar 

  153. Holik, H., Schabel, S.: Flotation. Chapter 5.10. In: Höke, U., Schabel, S. (eds.) Recycled Fibre and Deinking. Book 7 of the Series Papermaking Science and Technology, pp. 210–230, 2nd totally updated edition. Paperi ja Puu Oy, Helsinki (2009)

    Google Scholar 

  154. Naujock, H.-J.: Altpapieraufbereitung. Chapter 7. In: Blechschmidt, J. (ed.) Taschenbuch der Papiertechnik, pp. 159–188. Fachbuchverlag Leipzig in Carl Hanser Verlag, München (2009)

    Google Scholar 

  155. CEPI: Paper-Based Packaging and Recyclability Guidelines. Cepi (The Confederation of European Paper Industries) et al., Brussels (2019)

    Google Scholar 

  156. EPF: Annual Report 2016–2017. Tech. Rep. (EPF/European Panel Federation, Brussels, Belgium 2017)

    Google Scholar 

  157. Risse, M., Weber-Blaschke, G., Richter, K.: Sci. Total Environ. 661, 107–119 (2019)

    Google Scholar 

  158. Irle, M., Privat, F., Couret, L., Belloncle, C., Déroubaix, G., Bonnin, E., Cathala, B.: Wood Mater. Sci. Eng. 14(1), 19–23 (2019). https://doi.org/10.1080/17480272.2018.1427144

  159. Eisenlauer, M., Graf, H., Teipel, U.: Chemie Ingenieur Technik. 90, 521–532 (2018). https://doi.org/10.1002/cite.201700097

  160. McGavin, et al.: Bioresources. 15(3), 4640–4645 (2020)

    Google Scholar 

  161. ISO 14044:2006 Environmental management – Life cycle assessment – Requirements and guidelines, ISO, Geneva 2006

    Google Scholar 

  162. Nyrud, A.Q., Bringslimark, T.: Wood Fiber Sci. 42(2), 202–218 (2010)

    Google Scholar 

  163. Jalilzadehazhari, E., Johansson, J.: Wood Mater. Sci. Eng. 14(4), 192–200 (2019). https://doi.org/10.1080/17480272.2019.1575901

  164. Aries, M., Aarts, M., van Hoof, J.: Light. Res. Technol. 47(1), 6–27 (2015)

    Google Scholar 

  165. ISO/DIS 17300-1 (2019) Wood residue and post-consumer wood – Classification. Part 1: Vocabulary. ISO, Geneva

    Google Scholar 

  166. FAO (2018) Forest products annual market review 2017–2019. FAO, UNECE, United Nations Publications Sales No. E 18.II.E.27. United Nations Economic Commission for Europe, Geneva, Switzerland

    Google Scholar 

  167. Iha, N.K.: Green Design and Manufacturing for Sustainability. CRC Press/Taylor and Francis Group, Boca Raton (2016)

    Google Scholar 

  168. Grote, V., Frühwirth, M., Lackner, H.K., Goswami, N., Köstenberger, M., Likar, R., Moser, M.: Int. J. Environ. Res. Public Health. 18, 9749 (2021). https://doi.org/10.3390/ijerph18189

  169. Müller, U., Teischinger, A.: Connections in wood and material efficiency: Wood formation follows mechanical load. In: Allner, L., Kaltenbrunner, C., Kröhnert, D., Reinsberg, P. (eds.) Institute of Architecture at the University of Applied Arts Vienna, and Institute of Art Sciences and Art Education at the University of Applied Arts Vienna. Conceptual Joining: Wood Structures from Detail to Utopia, pp. 30–37. Birkhäuser, Berlin/Boston (2021)

    Google Scholar 

  170. Cristescu, C., Honfi, D., Sandberg, K., Sandin, Y., Shotton, E., Walsh, S.J., Cramer, M., Ridley, D., Arana-fernández, M. De, Llana, D.F., Barbero, M.G., Nasiri, B., Krofl, Ž.: Design for deconstruction and reuse of timber structures – state of the art review Design for deconstruction and reuse of timber structures – state of the art review. (2020). https://doi.org/10.23699/bh1w-zn97. RISE report 2020:05, Stockholm, Sweden

Download references

Acknowledgments

The design and illustration of typical silhouettes of different tree species by Christian Huber/BOKU (University of Natural Resources and Life Science, Vienna) is gratefully acknowledged.

The editorial support from BOKU students Simon Winter and Luca Giordano Nüssel is gratefully acknowledged.

We are very grateful for discussing Sect. 34.5 with Assoc. Prof. Dr. Anton Kraler, University of Innsbruck, Timber Engineering Unit – Institute for Construction and Materials Science, and discussion with Prof. Dr. Peter Schwarzbauer, BOKU Vienna, various data on global wood and material demand in Sect. 34.1. Manfred Brandstätter and Silvia Polleres, Holzforschung Austria, for their support on standards issues in Sect. 34.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Teischinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teischinger, A., Maderebner, R., Petutschnigg, A. (2023). Aspects of Wood Utilization and Material Selection. In: Niemz, P., Teischinger, A., Sandberg, D. (eds) Springer Handbook of Wood Science and Technology. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-81315-4_34

Download citation

Publish with us

Policies and ethics