Skip to main content

A Practical Adaptive Key Recovery Attack on the LGM (GSW-like) Cryptosystem

Part of the Lecture Notes in Computer Science book series (LNSC,volume 12841)

Abstract

We present an adaptive key recovery attack on the leveled homomorphic encryption scheme suggested by Li, Galbraith and Ma (Provsec 2016), which itself is a modification of the GSW cryptosystem designed to resist key recovery attacks by using a different linear combination of secret keys for each decryption. We were able to efficiently recover the secret key for a realistic choice of parameters using a statistical attack. In particular, this means that the Li, Galbraith and Ma strategy does not prevent adaptive key recovery attacks.

Keywords

  • Key recovery
  • Somewhat homomorphic encryption
  • GSW
  • Statistical attack

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-81293-5_25
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-81293-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Notes

  1. 1.

    The original paper was published in ProvSec 2016 [14] however, the ePrint version [13] of the paper contains major changes. In particular, the scheme we mount the adaptive key recovery attack on in this article is found in the ePrint version.

  2. 2.

    There are suggestions for generic constructions achieving IND-CCA1 security (e.g., [7]), but there are no concrete instantiations of these constructions.

  3. 3.

    Seeing as we do not use \(n\) in our attack, we do not set it explicitly. We do note, though, that it affects the hardness of the LWE instance, and is implicitly set by the requirement \(m>n\). We assume \(m\approx n\).

  4. 4.

    We chose \(\mathbf {e}_2\) arbitrarily; the attack works to recover any \(\mathbf {e}_i\), \(i\in \{1, \ldots , t\}\).

  5. 5.

    See discussion in Sect. 7 of [13].

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_28

    CrossRef  MATH  Google Scholar 

  2. Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Discrete Gaussian leftover hash lemma over infinite domains. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 97–116. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_6

    CrossRef  Google Scholar 

  3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. Cryptology ePrint Archive, Report 2015/046 (2015). http://eprint.iacr.org/2015/046

  4. Albrecht, M.R., Walter, M.: DGS, discrete Gaussians over the Integers (2018). https://bitbucket.org/malb/dgs

  5. Bai, S., Galbraith, S.D., Li, L., Sheffield, D.: Improved combinatorial algorithms for the inhomogeneous short integer solution problem. J. Cryptol. 32(1), 35–83 (2019). https://doi.org/10.1007/s00145-018-9304-1

    CrossRef  MathSciNet  MATH  Google Scholar 

  6. Becker, A., Coron, J.S., Joux, A.: Improved generic algorithms for hard knapsacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_21

    CrossRef  Google Scholar 

  7. Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext secure fully homomorphic encryption. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 213–240. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_8

    CrossRef  Google Scholar 

  8. Chenal, M., Tang, Q.: On key recovery attacks against existing somewhat homomorphic encryption schemes. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 239–258. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-16295-9_13

    CrossRef  Google Scholar 

  9. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055717

    CrossRef  Google Scholar 

  10. Dahab, R., Galbraith, S., Morais, E.: Adaptive key recovery attacks on NTRU-based somewhat homomorphic encryption schemes. In: Lehmann, A., Wolf, S. (eds.) ICITS 15. LNCS, vol. 9063, pp. 283–296. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-17470-9_17

    CrossRef  Google Scholar 

  11. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5

    CrossRef  Google Scholar 

  12. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_12

    CrossRef  Google Scholar 

  13. Li, Z., Galbraith, S.D., Ma, C.: Preventing adaptive key recovery attacks on the gentry-sahai-waters leveled homomorphic encryption scheme. Cryptology ePrint Archive, Report 2016/1146 (2016). http://eprint.iacr.org/2016/1146

  14. Li, Z., Galbraith, S.D., Ma, C.: Preventing adaptive key recovery attacks on the GSW levelled homomorphic encryption scheme. In: Chen, L., Han, J. (eds.) ProvSec 2016. LNCS, vol. 10005, pp. 373–383. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-47422-9_22

    CrossRef  Google Scholar 

  15. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-secure somewhat homomorphic encryption. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 55–72. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-0_4

    CrossRef  Google Scholar 

  16. Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient, generic, constant-time. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 455–485. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-63715-0_16

    CrossRef  Google Scholar 

  17. Raddum, H., Fauzi, P.: LGM-attack (2021). https://github.com/Simula-UiB/LGM-attack

  18. Zheng, Z., Xu, G., Zhao, C.: Discrete Gaussian measures and new bounds of the smoothing parameter for lattices. Cryptology ePrint Archive, Report 2018/786 (2018). https://eprint.iacr.org/2018/786

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prastudy Fauzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Fauzi, P., Hovd, M.N., Raddum, H. (2021). A Practical Adaptive Key Recovery Attack on the LGM (GSW-like) Cryptosystem. In: Cheon, J.H., Tillich, JP. (eds) Post-Quantum Cryptography. PQCrypto 2021. Lecture Notes in Computer Science(), vol 12841. Springer, Cham. https://doi.org/10.1007/978-3-030-81293-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81293-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81292-8

  • Online ISBN: 978-3-030-81293-5

  • eBook Packages: Computer ScienceComputer Science (R0)