Skip to main content

Ophthalmology of Xenarthra: Armadillos, Anteaters, and Sloths

  • Chapter
  • First Online:
Wild and Exotic Animal Ophthalmology

Abstract

Xenarthra (from Ancient Greek, meaning xénos, “foreign, alien” +árthron, “joint”) is a superorder of placental mammals that originated in South America during the Paleocene era, roughly 59 million years ago. Members of this group are thought to be one of the most ancient groups of mammals and include armadillos, anteaters, and sloths. Although its visual system has historically been understudied, the role of this group as an animal model for several human diseases of rod photoreceptors such as retinitis pigmentosa (Nakamura et al. 2016) and Leber congenital amaurosis (van der Spuy et al. 2005) may prove pivotal: they are considered completely colorblind (rod monochromats), an otherwise non-existent retinal adaptation among vertebrates that are not living underground or deep within the sea (Douglas et al. 1995; Meredith et al. 2013; Emerling and Springer 2014; Mohun et al. 2010). This claim is supported by behavioral (Newman 1913; Mendel et al. 1985; de Sampaio et al. 2016), anatomical (Wislocki 1928; Walls 1942; Watillon and Goffart 1969; Piggins and Muntz 1985), and genomic and phylogenetic (Emerling and Springer 2014) evidence. Despite support for rod monochromacy, many species within Xenarthra are diurnal and occupy niches receiving direct or indirect sunlight. Although rod monochromacy does not provide high visual acuity and can even result in total blindness in high luminance conditions, there is debate on how much Xenarthrans rely on vision and whether or not they predominantly use other senses, particularly in photopic conditions (Emerling and Springer 2014). Limited information exists on the visual capabilities, ophthalmic anatomy, and naturally occurring ophthalmic disease processes that affect Xenarthran eyes. In addition, detailed reports of clinical examination findings and comprehensive results of basic ocular diagnostic tests are lacking. Furthering our knowledge of the visual systems and ophthalmic pathologies in this group of animals may aid in conservation efforts (e.g., prevention of vehicular trauma of which Xenarthrans are frequent victims), rehabilitation, or welfare in captivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnew D, Nofs S, Delaney MA et al (2018) Xenarthra, Erinacoemorpha, some Afrotheria, and Phloidota. In: Terio KA, McAlosse D, St. Leger J (eds) Pathology of wildlife and zoo animals. Elsevier Inc. London, pp 517–532

    Google Scholar 

  • Aguilar RF, Superina M (2015) Xenarthra. In: Miller RE, Fowler ME (eds) Fowler’s zoo and wild animal medicine. Elsevier, St. Louis, pp 355–369

    Google Scholar 

  • Aldana Marcos HJ, Affanni JM (2005) Anatomy, histology, histochemistry and fine structure of the Harderian gland in the South American armadillo Chaetophractus villosus (Xenarthra, Mammalia). Anat Embryol (Berl) 209:409–424

    Article  PubMed  Google Scholar 

  • Aldana Marcos HJ, Cintia Ferrari C, Cervino C et al (2002) Histology, histochemistry and fine structure of the lacrimal and nictitans gland in the South American armadillo Chaetophractus villosus (Xenarthra, Mammalia). Exp Eye Res 75:731–744

    Article  PubMed  Google Scholar 

  • Andrade-da-costa BLS, Pessoa VF, Bousfield JD et al (1989) Ganglion-cell size and distribution in the retina of the 2-toed sloth (Choloepus-Didactylus L). Braz J Med Biol Res 22:233–236

    CAS  PubMed  Google Scholar 

  • Brandt F, Zhou HM, Shi ZR et al (1990a) The pathology of the eye in armadillos experimentally infected with Mycobacterium leprae. Lepr Rev 61:112–131

    CAS  PubMed  Google Scholar 

  • Brandt F, Zhou HM, Shi ZR et al (1990b) Severity of leprosy eye lesions in armadillos infected with Mycobacterium leprae. Lepr Rev 61:188–192

    CAS  PubMed  Google Scholar 

  • Clark WE, Gros LE (1959) The antecedents of man. Edinburgh Univ Press, p 374

    Google Scholar 

  • Costa BL, Pessoa VF, Bousfield JD et al (1987) Unusual distribution of ganglion cells in the retina of the three-toed sloth (Bradypus variegatus). Braz J Med Biol Res 20:741–748

    CAS  PubMed  Google Scholar 

  • de Araujo NL, Raposo AC, Pinho AC et al (2017) Conjunctival bacterial Flora, Antibiogram, and lacrimal production tests of collared anteater (tamandua Tetradactyla). J Zoo Wildl Med 48:7–12

    Article  PubMed  Google Scholar 

  • de Sampaio C, Camilo-Alves P, de Miranda Mourao G (2016) Responses of a specialized insectivorous mammal (Myrmecophaga tridactyla) to variation in ambient temperature. Biotropica 38:52–56

    Google Scholar 

  • Dilger-Sanches AW, Montiani-Ferreira F (2018) Gross and histological findings in South American anteater eyes. In: Kluyber D (ed) Proceedings of the 1st Workshop on wild giant anteater health research. Instituto de Conservação de Animais Silvestres. São Paulo, SP, Brazil, p 23

    Google Scholar 

  • Douglas RJ, Partridge JH, Hope AC (1995) Visual and lenticular pigments in the eyes of demersal deep- sea fishes. J Comp Physiol A 177:111–122

    Article  Google Scholar 

  • Emerling CA, Springer MS (2014) Eyes underground: regression of visual protein networks in subterranean mammals. Mol Phylogenet Evol 78:260–270

    Article  CAS  PubMed  Google Scholar 

  • Johnson GL (1901) Contributions to the comparative anatomy of the mammalian eye chiefly based on ophthalmoscopic examination. Philos Trans 194:38

    Google Scholar 

  • Malaty R, Togni B (1988) Corneal changes in nine-banded armadillos with leprosy. Invest Ophthalmol Vis Sci 29:140–145

    CAS  PubMed  Google Scholar 

  • Malaty R, Beuerman RW, Pedroza L (1990) Ocular leprosy in nine-banded armadillos following intrastromal inoculation. Int J Lepr Other Mycobact Dis 58:554–559

    CAS  PubMed  Google Scholar 

  • Mendel FC (1981) Use of hands and feet of two-toed sloths (Choloepus hoffmanni) during climbing and terrestrial locomotion. J Mammal 62:413–421

    Article  Google Scholar 

  • Mendel FC, Piggins D, Fish DR (1985) Vision of 2-toed sloths (Choloepus). J Mammal 66:197–200

    Article  Google Scholar 

  • Meredith RW, Gatesy J, Emerling CA et al (2013) Rod monochromacy and the coevolution of cetacean retinal opsins. PLoS Genet 9:e1003432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohun SM, Davies WL, Bowmaker JK et al (2010) Identification and characterization of visual pigments in caecilians (Amphibia: Gymnophiona), an order of limbless vertebrates with rudimentary eyes. J Exp Biol 213:3586–3592

    Article  CAS  PubMed  Google Scholar 

  • Nakamura PA, Tang S, Shimchuk AA et al (2016) Potential of small molecule-mediated reprogramming of rod photoreceptors to treat retinitis pigmentosa. Invest Ophthalmol Vis Sci 57:6407–6415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman HH (1913) The natural history of the nine-banded armadillo of Texas. Am Nat 47:513–539

    Article  Google Scholar 

  • Piggins D, Muntz WRA (1985) The eye of the three-toed sloth. In: The evolution and ecology of armadillos, sloths and vermilinguas. Smithsonian Institution Press, Washington, DC, pp 191–197

    Google Scholar 

  • Rodarte-Almeida ACV, Passos AO, Mergulhao FV et al (2016) The eye of the giant anteater (Myrmecophaga tridactyla): biometric findings and reference values for selected ophthalmic diagnostic tests. In: 47th ACVO Annual Proceedings, Monterey, California

    Google Scholar 

  • Van der Spuy J, Munro PM, Luthert PJ et al (2005) Predominant rod photoreceptor degeneration in Leber congenital amaurosis. Mol Vis 11:542–553

    PubMed  Google Scholar 

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Bloomfield Hills, p 785

    Google Scholar 

  • Watillon M, Goffart M (1965) Physiological implications of the structure of the sloth (Choloepus hoffmanni Perers) eye. Arch Int Physiol Biochim 73:163–166

    CAS  PubMed  Google Scholar 

  • Watillon M, Goffart M (1969) The eye of the sloth (Choloepus hoffmanni Peters). Acta Zool Pathol Antverp 49:107–122

    CAS  PubMed  Google Scholar 

  • Weaker FJ (1981) Light microscopic and ultrastructural features of the Harderian gland of the nine-banded armadillo. J Anat 133(Pt 1):49–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wislocki GB (1928) Observations on the gross and microscopic anatomy of the sloths (Bradypus griseus griseus Gray and Choloepus hoffmanni Peters). J Morphol 46:317–397

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica M. Meekins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meekins, J.M., Moore, B.A. (2022). Ophthalmology of Xenarthra: Armadillos, Anteaters, and Sloths. In: Montiani-Ferreira, F., Moore, B.A., Ben-Shlomo, G. (eds) Wild and Exotic Animal Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-81273-7_4

Download citation

Publish with us

Policies and ethics