Skip to main content

EMG and EEG Pattern Analysis for Monitoring Human Cognitive Activity during Emotional Stimulation

  • Conference paper
  • First Online:
Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2020)

Abstract

The paper describes the experiments on monitoring human cognitive activity with additional emotional stimulation and their results. The purpose of the research is to determine the characteristics of EMG and EEG signals that reflect an emotional state and cognitive activity dynamics. The experiments involved using a multi-channel bioengineering system. The channels for recording EEG signals (19 leads according to the 10–20 system), EMG signals (by the “corrugator supercilia” and “zygomaticus major” channels according to the Fridlund and Cacioppo methodology) and the protocol information channel were engaged. There is a description of an experimental scenario, which assumed that testees performed homogeneous calculating tasks. According to the experimental results, there were formed 1344 artifact-free EEG and EMG patterns with a duration of 4 s. During emotiogenic stimulation, an EMG signal by the corresponding channel intensifies and a power spectrum shifts to the low-frequency region.An emotional state interpreter based on a neural-like hierarchical structure was used to classify EMG patterns. The classification success was 93%. The authors have determined spectral characteristics and attractors of EEG patterns. The highlighted attractor features were: the averaged vector length for the i-th two-dimensional attractor projection; density of trajectories near its center. The most informative frequency range (theta rhythm) and leads (P3-A1, C3-A1, P4-A2, C4-A2) were selected. These features have revealed a decrease in testees’ cognitive activity after 30–40 min of work. After negative emotional stimulation, there was an increase in absolute power in the theta rhythm, an increase in the average vector length for the i-th two-dimensional attractor projection, and a decrease in the trajectory density in four central cells. Tasks success indicators were improving. The revealed EEG signal features allow assessing the current cognitive activity of a person taking into account the influence of emotional stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rabinovich, M.I., Muezzinoglu, M.K.: Nonlinear dynamics of the brain: emotion and cognition. Adv. Phys. Sci. 180(4), 371–387 (2010). https://doi.org/10.3367/UFNr.0180.201004b.0371. (in Russ., Uspekhi Fizicheskih Nauk)

    Article  Google Scholar 

  2. Krutenkova, E.P., Esipenko, E.A., Ryazanova, M.K., Khodanovich, M.Yu.: Emotional pictures impact on cognitive tasks solving. Tomsk State University Journal of Biology 21(1), 129–145 (2013). (in Russ., Vestnik Tomskogo Gosudarstvennogo Universiteta. Biologiya)

    Google Scholar 

  3. Lu, Y., Jaquess, K.J., Hatfield, B.D., Zhou, C., Li, H.: Valence and arousal of emotional stimuli impact cognitive-motor performance in an oddball task. Biol. Psychol. 125, 105–114 (2017). https://doi.org/10.1016/j.biopsycho.2017.02.010

    Article  Google Scholar 

  4. Filatova, N.N., Sidorov, K.V.: Computer models of emotions: construction and methods of research. Tver State Technical University (2017). (in Russ., Kompyuternye Modeli Emotsy: Postroenie i Metody Issledovaniya)

    Google Scholar 

  5. Gerjets, P., Walter, C., Rosenstiel, W., Bogdan, M., Zander, T.O.: Cognitive state monitoring and the design of adaptive instruction in digital environments: lessons learned from cognitive workload assessment using a passive brain-computer interface approach. Front. Neurosci. Hypothesis Theory Article. 8(385), 1–21 (2014). https://doi.org/10.3389/fnins.2014.00385

  6. Sidorov, K.V., Filatova, N.N., Shemaev, P.D., Bodrina, N.I.: Application of fuzzy statements for interpretation of the emotional influence on human cognitive activity. Fuzzy Syst. Soft Comput. 13(2), 147–165 (2018). https://doi.org/10.26456/fssc47. (in Russ., Nechetkie Sistemy i Myagkie Vychisleniya)

  7. Pomer-Escher, A., Tello, R., Castillo, J., Bastos-Filho, T.: Analysis of mental fatigue in motor imagery and emotional stimulation based on EEG. In: Proceedings of the XXIV Brazilian Congress of Biomedical Engineering “CBEB 2014”, Uberlandia, Brazil, pp. 1709–1712 (2014). https://www.researchgate.net/publication/265207783.

  8. Grissmann, S., Faller, J., Scharinger, C., Spuler, M., Gerjets, P.: Electroencephalography based analysis of working memory load and affective valence in an n-back task with emotional stimuli. Front. Hum. Neurosci. 11(616), 1–12 (2017). https://doi.org/10.3389/fnhum.2017.00616

    Article  Google Scholar 

  9. Chołoniewski, J., Chmiel, A., Sienkiewicz, J., Hołyst, J., Kuster, D., Kappas, A.: Temporal Taylor’s scaling of facial electromyography and electrodermal activity in the course of emotional stimulation. Chaos Solitons Fractals 90, 91–100 (2016). https://doi.org/10.1016/j.chaos.2016.04.023

    Article  MathSciNet  Google Scholar 

  10. Mavratzakis, A., Herbert, C., Walla, P.: Emotional facial expressions evoke faster orienting responses, but weaker emotional responses at neural and behavioural levels compared to scenes: a simultaneous EEG and facial EMG study. NeuroImage 124, 931–946 (2016). https://doi.org/10.1016/j.neuroimage.2015.09.065

    Article  Google Scholar 

  11. Shu, L., et al.: A review of emotion recognition using physiological signals. Sensors 18(7), 2074 (2018). https://doi.org/10.3390/s18072074

    Article  Google Scholar 

  12. Panischeva, S.N., Panischev, O., Demin, S.A., Latypov, R.R.: Collective effects in human EEGs at cognitive activity. J. Phys.: Conf. Ser. 1038, 012025 (2018). https://doi.org/10.1088/1742-6596/1038/1/012025

    Article  Google Scholar 

  13. Montgomery, R.W., Montgomery, L.D.: EEG monitoring of cognitive performance. Phys. Med. Rehabil. Res. 3(4), 1–5 (2018). https://doi.org/10.15761/PMRR.1000178

    Article  Google Scholar 

  14. Magosso, E., De Crescenzio, F., Ricci, G., Piastra, S., Ursino, M.: EEG alpha power is modulated by attentional changes during cognitive tasks and virtual reality immersion. Comput. Intell. Neurosci. 7051079 (2019). https://doi.org/10.1155/2019/7051079

  15. Friedman, N., Fekete, T., Gal, K., Shriki, O.: EEG-Based prediction of cognitive load in intelligence tests. Front. Hum. Neurosci. 13(191), 1–9 (2019). https://doi.org/10.3389/fnhum.2019.00191

    Article  Google Scholar 

  16. Perdiz, J., Pires, G., Nunes, U.J.: Emotional state detection based on EMG and EOG biosignals: a short survey. In: Proceedings of 5th Portuguese Meeting on Bioengineering (ENBENG), pp. 1–4. IEEE. Coimbra (2017).https://doi.org/10.1109/ENBENG.2017.7889451

  17. Abtahi, F., Ro, T., Li, W., Zhu, Z.: Emotion analysis using audio/video, EMG and EEG: a dataset and comparison study. In: Proceedings of Winter Conference on Applications of Computer Vision (WACV), pp. 10–19. IEEE. Lake Tahoe (2018). https://doi.org/10.1109/WACV.2018.00008

  18. Jerritta, S., Murugappan, M., Wan, K., Sazali, Y.: Emotion recognition from facial EMG signals using higher order statistics and principal component analysis. J. Chin. Inst. Eng. 37(3) (2013). https://doi.org/10.1080/02533839.2013.799946

  19. Lee, M., Cho, Y., Lee, Y., Pae, D., Lim, M., Kang, T.: PPG and EMG based emotion recognition using convolutional neural network. In: Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Prague, vol. 1, pp. 595–600 (2019). https://doi.org/10.5220/0007797005950600

  20. Yang, S., Yang, G.: Emotion recognition of EMG based on improved L-M BP neural network and SVM. J. Softw. 6(8), 1529–1536 (2011)

    Google Scholar 

  21. Hsu, Y.-F., Xu, W., Parviainen, T., Hämäläinen, J.A.: Context-dependent minimization of prediction errors involves temporal-frontal activation. NeuroImage 207, 116355 (2020). https://doi.org/10.1016/j.neuroimage.2019.116355

    Article  Google Scholar 

  22. Ouyang, G., Hildebrandt, A., Schmitz, F., Herrmann, C.S.: Decomposing alpha and 1/f brain activities reveals their differential associations with cognitive processing speed. NeuroImage 205, 116304 (2020). https://doi.org/10.1016/j.neuroimage.2019.116304

    Article  Google Scholar 

  23. Duprez, J., Gulbinaite, R., Cohen, M.X.: Midfrontal theta phase coordinates behaviorally relevant brain computations during cognitive control. NeuroImage 207, 116340 (2020). https://doi.org/10.1016/j.neuroimage.2019.116340

  24. Gray, J.R., Braver, T.S., Raichle, M.E.: Integration of emotion and cognition in the lateral prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 99(6), 4115–4120 (2002). https://doi.org/10.1073/pnas.062381899

    Article  Google Scholar 

  25. Thayer, J.F., Hansen, A.L., Saus-Rose, E., Johnsen, B.H.: Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med. 37(2), 141–153 (2009). https://doi.org/10.1007/s12160-009-9101-z

    Article  Google Scholar 

  26. Kropotov, J.: Quantitative EEG, Event-Related Potentials and Neurotherapy, 1st edn. Academic Press, London (2009)

    Google Scholar 

  27. Simonov, P.V. The Emotional Brain. Nauka Publ., Moscow (1981). (in Russ., Emocionalnij mozg)

    Google Scholar 

  28. Baldwin, C.L., Penaranda, B.N.: Adaptive training using an artificial neural network and EEG metrics for within- and cross-task workload classification. NeuroImage 59(1), 48–56 (2012). https://doi.org/10.1016/j.neuroimage.2011.07.047

    Article  Google Scholar 

  29. Smirnitskaya, A.V., Vladimirov, I.Yu.: Differences in the activity of the executive functions in algorithmic and insight problem solving: ERP study. Steps 3(1), 98–108 (2017). (in Russ., Shagi)

    Google Scholar 

  30. Filatova, N.N., Bodrina, N.I., Sidorov, K.V., Shemaev, P.D.: Organization of information support for a bioengineering system of emotional response research. In: Proceedings of the XX International Conference “Data Analytics and Management in Data Intensive Domains” DAMDID/RCDL. CEUR Workshop Proceedings, pp. 90–97. CEUR. Moscow, Russia (2018). http://ceur-ws.org/Vol-2277/paper18.pdf

  31. Filatova, N.N., Sidorov, K.V., Shemaev, P.D., Rebrun, I.A.: Emotion and cognitive activity monitoring system. In: Proceedings of the 3rd Russian-Pacific Conference on Computer Technology and Applications “RPC 2018”, pp. 1–4. IEEE. Vladivostok, Russia (2018). https://doi.org/10.1109/RPC.2018.8482220

  32. Jasper, H.H.: The ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 10, 371–375 (1958)

    Google Scholar 

  33. Fridlund, A.J., Cacioppo, J.T.: Guidelines for human electromyographic research. Psychophysiology 23(5), 567–589 (1986). https://doi.org/10.1111/j.1469-8986.1986.tb00676.x

    Article  Google Scholar 

  34. Sidorov, K., Filatova, N., Shemaev, P.: An interpreter of a human emotional state based on a neural-like hierarchical structure. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds.) IITI’18 2018. AISC, vol. 874, pp. 483–492. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01818-4_48

    Chapter  Google Scholar 

  35. Rangayyan, R.M.: Biomedical Signal Analysis. 2nd edn. Wiley-IEEE Press, New York (2015). https://doi.org/10.1002/9781119068129

  36. Sidorov, K.V., Filatova, N.N., Bodrina, N.I., Shemaev, P.D.: Analysis of biomedical signals as a way to assess cognitive activity during emotional stimulation. Proc. Southwest State Univ. Ser.: Control Comput. Eng. Inf. Sci. Med. Instr. Eng. 9(1), 74–85 (2019). (in Russ., Izvestiya YUgo-Zapadnogo Gosudarstvennogo Universiteta. Seriya: Upravleniye, Vychislitelnaya tekhnika, Informatika)

    Google Scholar 

  37. Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29(2–3), 169–195 (1999). https://doi.org/10.1016/S0165-0173(98)00056-3

    Article  Google Scholar 

  38. Filatova, N.N., Sidorov, K.V., Shemaev, P.D., Iliasov, L.V.: Monitoring attractor characteristics as a method of objective estimation of testee’s emotional state. J. Eng. Appl. Sci. 12, 9164–9175 (2017)

    Google Scholar 

Download references

Acknowledgements

The work has been done within the framework of the grant of the President of the Russian Federation for state support of young Russian PhD scientists (MК-1398.2020.9).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sidorov, K., Bodrina, N., Filatova, N. (2021). EMG and EEG Pattern Analysis for Monitoring Human Cognitive Activity during Emotional Stimulation. In: Sychev, A., Makhortov, S., Thalheim, B. (eds) Data Analytics and Management in Data Intensive Domains. DAMDID/RCDL 2020. Communications in Computer and Information Science, vol 1427. Springer, Cham. https://doi.org/10.1007/978-3-030-81200-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81200-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81199-0

  • Online ISBN: 978-3-030-81200-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics