Skip to main content

Hydrate Ridge—A Gas Hydrate System in a Subduction Zone Setting

  • 1787 Accesses

Abstract

Hydrate Ridge is a 6–10 km wide, 22 km long N–S striking thrust ridge within the Cascadia accretionary prism offshore of Oregon in the NE Pacific Ocean. Over the past four decades it has been a primary focus site for studies of gas hydrate/free gas systems within a convergent margin setting. A local peak called the North Hydrate Ridge (NHR), located at a depth of 590 m, hosts the first documented cold seep system driven by convergent margin processes and supports chemosynthetic communities sustained by the anaerobic oxidation of methane. A southern peak at 780 m depth, known as the South Hydrate Ridge (SHR), is actively venting gas around an area of seafloor bacterial mats and a 40 m high carbonate chimney within a long-lived vent system separate from NHR. Bottom simulating reflections (BSRs) observed in seismic profiles indicate these vents are part of a broad gas hydrate province that extends across all of Hydrate Ridge. Hydrate Ridge has been the focus of extensive geophysical surveys, water column acoustic and sampling surveys, high-resolution seafloor mapping using remotely operated, autonomous and deep-towed vehicles, seafloor fluid flow monitoring, and a site for the Ocean Observatories Initiative (OOI). All of these are in support or complementing Ocean Drilling Program (ODP) drilling efforts during Legs 146 and 204 to quantify and characterize the gas hydrate/free gas system. Hydrate concentrations are up to 45% of pore space (30% of total volume), but typically 2–20%, and are strongly coupled with the structure and stratigraphy within the thrust ridge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arsenault MA, Tréhu AM, Bangs NL et al (2001) P-wave tomography of Hydrate Ridge, Oregon continental margin. AGUFM 2001, pp OS12B-0423

    Google Scholar 

  • Bangs NL, Sawyer DS, Golovchenko X (1993) Free-gas at the base of the gas hydrate zone in the vicinity of the Chile triple junction. Geology 21:905–908

    Article  Google Scholar 

  • Bangs NL, Hornbach MJ, Berndt C (2011) The mechanics of intermittent methane venting at South Hydrate Ridge inferred from 4D seismic surveying. EPSL 310:105–112. https://doi.org/10.1016/j.epsl.2011.06.022

    Article  Google Scholar 

  • Bohrmann G, Greinert J, Suess E et al (1998) Authigenic carbonates from the Cascadia subduction zone and their relation to gas hydrate stability. Geology 26:647–650

    Article  Google Scholar 

  • Carson B, Westbrook GK, Musgrave RJ et al (eds) (1995) Proc ODP Sci Results, leg 146 (pt 1). Ocean Drilling Program, College Station, TX. https://doi.org/10.2973/odp.proc.sr.146-1.1995

    Book  Google Scholar 

  • Caulet JP (1995) Radiolarians from the Cascadia Margin, leg 146. In: Proc ODP Sci Results. National Science Foundation, pp 47–62

    Google Scholar 

  • Chevallier J, Tréhu AM, Bangs N et al (2006) Seismic sequence stratigraphy and tectonic evolution of southern Hydrate Ridge. Proc ODP Sci Results 204:1–29. https://doi.org/10.2973/odp.proc.sr.204.121.2006

    Article  Google Scholar 

  • Crutchley GJ, Berndt C, Geiger S et al (2013) Drivers of focused fluid flow and methane seepage at south Hydrate Ridge, offshore Oregon, USA. Geology 41(5):551–554

    Article  Google Scholar 

  • Fourtanier E, Caulet JP (1995) Siliceous microfossil stratigraphic synthesis of site 892, Cascadia Margin. In: Carson B et al (eds) Proc ODP Sci Results 146 (pt 1). Ocean Drilling Program, College Station, TX, pp 369–374

    Google Scholar 

  • Fourtanier E (1995) Neogene diatom biostratigraphy of site 892, Cascadia Margin. In: Carson B et al (eds) Proc ODP Sci Results 146 (pt 1). Ocean Drilling Program, College Station, TX, pp 63–77

    Google Scholar 

  • Goldfinger C, Yeats RS, Kulm LD et al (1992) Transverse structural trends along the Oregon convergent margin: implications for Cascadia earthquake potential and crustal rotations. Geology 20:141–144. https://doi.org/10.1130/0091-7613(1992)020%3c0141:TSTATO%3e2.3.CO;2

    Article  Google Scholar 

  • Goldfinger C, Kulm LD, Yeats RS et al (1997) Oblique strike-slip faulting of the central Cascadia submarine forearc. J Geophys Res 102(B4):8217–8244. https://doi.org/10.1029/96JB02655

    Article  Google Scholar 

  • Greinert J, Bohrmann G, Suess E (2001) Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution and origin of authigenic lithologies. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection, vol 124. Am Geophy Union, pp 99–114

    Google Scholar 

  • Haugerud RA (1999) Digital elevation model (DEM) of Cascadia, latitude 39N–53N, longitude 116W–133W. Open-File Rep—US Geol Surv, pp 99–369

    Google Scholar 

  • Heeschen KU, Tréhu AM, Collier RW et al (2003) Distribution and height of methane bubble plumes on the Cascadia margin characterized by acoustic imaging. Geophys Res Lett 30:1643

    Article  Google Scholar 

  • Holbrook WS, Hoskins H, Wood WT et al (1996) Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science 273(5283):1840–1843

    Article  Google Scholar 

  • Hornbach MJ, Bangs NL, Berndt C (2012) Detecting hydrate and fluid flow from bottom simulating reflector depth anomalies. Geology 40:227–230. https://doi.org/10.1130/G32635.1

    Article  Google Scholar 

  • Hyndman RD, Davis EE (1992) A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. J Geophys Res 97(B5):7025–7041. https://doi.org/10.1029/91JB03061

    Article  Google Scholar 

  • Hyndman RD, Spence GD, Chapman NR et al (2001) Geophysical studies of marine gas hydrate in Northern Cascadia. Geophys Monogr Ser 124:273–295

    Google Scholar 

  • Johnson JE, Goldfinger C, Suess E (2003) Geophysical constraints on the surface distribution of authigenic carbonates across the Hydrate Ridge region, Cascadia Margin. Mar Geol 202(1):79–120

    Article  Google Scholar 

  • Johnson JE, Goldfinger C, Tréhu AM et al (2006) North-south variability in the history of deformation and fluid venting across Hydrate Ridge, Cascadia Margin. Proc ODP Sci Results 204:16. https://doi.org/10.2973/odp.proc.sr.204.125.2006

    Article  Google Scholar 

  • Kannberg PK, Tréhu AM, Pierce SD et al (2013) Temporal variation of methane flares in the ocean above Hydrate Ridge, Oregon. Earth Planet Sci Lett 368:33–42

    Article  Google Scholar 

  • Kastner M, Kvenvolden KA, Whiticar MJ et al (1995) Relation between pore fluid chemistry and gas hydrates associated with bottom-simulating reflectors at the Cascadia margin, Sites 889 and 892. In: Carson B et al (eds) Proc ODP Sci Results 146 (pt 1). College Station, TX. Ocean Drilling Program, pp 175–187

    Google Scholar 

  • Knudson KP, Hendy IL (2009) Climatic influences on sediment deposition and turbidite frequency in the Nitinat Fan, British Columbia. Mar Geol 262(1–4):29–38. https://doi.org/10.1016/j.margeo.2009.03.002

    Article  Google Scholar 

  • Kulm LD, Suess E, Moore JC et al (1986) Oregon subduction zone: venting, fauna, and carbonates. Science 231:561–566

    Article  Google Scholar 

  • Kumar D, Sen MK, Bangs NL et al (2006) Seismic anisotropy at Hydrate Ridge. Geophys Res Lett 33:L01306. https://doi.org/10.1029/2005GL023945

    Article  Google Scholar 

  • Kumar D, Sen MK, Bangs NL (2007) Gas hydrate concentration and characteristics from multi-component seismic reflection data from Hydrate Ridge. J Geophys Res 112:B12306. https://doi.org/10.1029/2007JB004993

    Article  Google Scholar 

  • Kvenvolden KA (1988) Methane hydrate—a major reservoir of carbon in the shallow geosphere? Chem Geol 71:41–51

    Article  Google Scholar 

  • MacKay ME (1995) Structural variation and landward vergence at the toe of the Oregon accretionary prism. Tectonics 14:1309–1320

    Article  Google Scholar 

  • MacKay ME, Moore GF, Cochrane GR et al (1992) Landward vergence and oblique structural trends in the Oregon margin accretionary prism: implications and effect on fluid flow. Earth Planet Sci Lett 109:477–491

    Article  Google Scholar 

  • MacKay ME, Jarrad RD, Westbrook GK (1994) ODP Leg 146, origin of BSRs: geophysical evidence from the Cascadia accretionary prism. Geology 22:459–462

    Article  Google Scholar 

  • McNeill LC, Goldfinger C, Kulm L (2000) Tectonics of the Neogene Cascadia forearc basin: investigations of a deformed late Miocene unconformity. Geol Soc Am Bull 112(8):1209–1224. https://doi.org/10.1130/0016-7606(2000)112%3c1209:TOTNCF%3e2.3.CO;2

    Article  Google Scholar 

  • Milkov AV, Claypool GE, Lee YJ et al (2003) In situ methane concentrations at Hydrate Ridge, offshore Oregon: new constraints on the global gas hydrate inventory from an active margin. Geology 31(10):833–836

    Article  Google Scholar 

  • Nelson H (1976) Late Pleistocene and Holocene depositional trends, processes, and history of Astoria deep-sea fan, Northeast Pacific. Mar Geol 20:129–173. https://doi.org/10.1016/0025-3227(76)90083-9

    Article  Google Scholar 

  • Pecher IA, Kukowski N, Ranero CR et al (2001) Gas hydrates along the Peru and Middle America trench systems. Geophys Monogr Ser 124:257–271

    Google Scholar 

  • Philip BT, Denny AR, Solomon EA et al (2016) Time-series measurements of bubble plume variability and water column methane distribution above southern Hydrate Ridge, Oregon. Geochem Geophys 17(3):1182–1196. https://doi.org/10.1002/2016GC006250

    Article  Google Scholar 

  • Phrampus BJ, Harris RN, Tréhu AM (2017) Heat flow bounds over the Cascadia margin derived from bottom simulating reflectors and implications for thermal models of subduction. Geochem Geophys 18:3309–3326. https://doi.org/10.1002/2017GC007077

    Article  Google Scholar 

  • Revelle RR (1983) Methane hydrates in continental slope sediments and increasing atmospheric carbon dioxide. Changing Climates. National Academy Press, Washington DC, pp 252–261

    Google Scholar 

  • Ruppel C (1997) Anomalously cold temperatures observed at the base of the gas hydrate stability zone, US Atlantic passive margin. Geology 25:699–702

    Article  Google Scholar 

  • Shipboard Scientific Party (1994) Site 892. In: Westbrook GK et al (eds) Proc ODP Init Repts 146 (pt 1). College Station, TX. Ocean Drilling Program, pp 301–378

    Google Scholar 

  • Shipboard Scientific Party (2003) Site 1244. In: Tréhu AM et al (eds) Proc ODP Init Repts 204. College Station, TX. Ocean Drilling Program, pp 1–132. https://doi.org/10.2973/odp.proc.ir.204.103.2003\

  • Shipley TH, Houston MH, Buffler RT et al (1979) Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. AAPG Bull 63(12):2204–2213. https://doi.org/10.1306/2F91890A-16CE-11D7-8645000102C1865D

    Article  Google Scholar 

  • Singh SC, Minshull TA, Spence GD (1993) Velocity structure of a gas hydrate reflector. Science 260:204–207

    Article  Google Scholar 

  • Suess EM, Torres ME, Bohrmann G et al (1999) Gas hydrate destabilization: enhanced dewatering, benthic material turnover, and large methane plumes at the Cascadia convergent margin. Earth Planet Sci Lett 170:1–15

    Article  Google Scholar 

  • Suess E, Carson B, Ritger S et al (1985) Biological communities at vent sites along the subduction zones off Oregon. In: Jones ML (ed) The hydrothermal vents of the Eastern Pacific: an overview. Bull Biol Soc Wash, vol 6, pp 475–484

    Google Scholar 

  • Suess E, Torres ME, Bohrmann G et al (2001) Sea floor methane hydrates at Hydrate Ridge, Cascadia margin. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution, and detection. Am Geophysical Union, Geophys Monogr Ser, vol 124, pp 87–98

    Google Scholar 

  • Teichert BMA, Eisenhauer A, Bohrmann G et al (2003) U/Th systematics and ages of authigenic carbonates from Hydrate Ridge, Cascadia Margin: recorders of fluid flow variations. Geochim Cosmochim Acta 67(20):3845–3857. https://doi.org/10.1016/S0016-7037(03)00128-5

    Article  Google Scholar 

  • Torres ME, Wallmann K, Tréhu AM et al (2004) Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon. Earth Planet Sci Lett 226:225–241

    Article  Google Scholar 

  • Torres ME, Trehu AM, Cespedes N et al (2008) Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311. Earth Plan Sci Lett 271:170–180

    Article  Google Scholar 

  • Torres M, Brown K, Collier RW et al (1998) Geochemical observations on Hydrate Ridge, Cascadia margin, during R/V Brown-Ropos cruise. August 1998: Oregon State University Data Report 171 reference 98-4:47

    Google Scholar 

  • Tréhu AM, Flueh E (2001) Estimating the thickness of the free gas zone beneath Hydrate Ridge, Oregon continental margin, from seismic velocities and attenuation. J Geophys Res 106:2035–2045

    Article  Google Scholar 

  • Tréhu AM, Torres ME, Moore GF et al (1999) Temporal and spatial evolution of a gas-hydrate-bearing accretionary ridge on the Oregon continental margin. Geology 27:939–942

    Article  Google Scholar 

  • Tréhu AM, Bohrmann G, Rack FR et al (2003) Proc ODP Init Repts 204. Ocean Drilling Program, College Station, TX. https://doi.org/10.2973/odp.proc.ir.204.2003

    Book  Google Scholar 

  • Tréhu AM, Flemings PB, Bangs NL et al (2004a) Feeding methane vents and gas hydrate deposits at south Hydrate Ridge. Geophys Res Lett 31:L23310. https://doi.org/10.1029/2004GL021286

    Article  Google Scholar 

  • Tréhu AM, Bohrmann G, Rack FR et al (2004b) Three-dimensional distribution of gas hydrate beneath the seafloor: constraints from ODP Leg 204. Earth Planet Sci Lett 222:845–862. https://doi.org/10.1016/j.epsl.2004.03.035

    Article  Google Scholar 

  • Tréhu AM, Bohrmann G, Torres ME et al (eds) (2006) Proc ODP Scientific Results 204. Ocean Drilling Program, College Station, TX. https://doi.org/10.2973/odp.proc.sr.204.2006

    Book  Google Scholar 

  • Weinberger JL, Brown KM, Long PE (2005) Painting a picture of gas hydrate distribution with thermal images. Geophys. Res Lett 32:L04609. https://doi.org/10.1029/2004GL021437

    Article  Google Scholar 

  • Weitemeyer KA, Constable S, Tréhu AM (2011) A marine electromagnetic survey to detect gas hydrate at Hydrate Ridge, Oregon. Geophys J Int 187(1):45–62

    Article  Google Scholar 

  • Westbrook GK, Carson B, Musgrave RJ et al (1994) Proc ODP Init Repts 146 (part 1). College Station, TX. Ocean Drilling Program

    Google Scholar 

  • Zellers SD (1995) Foraminiferal biofacies, paleoenvironments, and biostratigraphy of Neogene-Quaternary sediments, Cascadia Margin. In: Carson B et al (eds) Proc ODP Sci Results 146 (pt 1). College Station, TX. Ocean Drilling Program, pp 79–113

    Google Scholar 

  • Zelt CA, Barton PJ (1998) 3D seismic refraction tomography: a comparison of two methods applied to data from the Faeroe Basin. J Geophys Res 103:7187–7210

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan L. Bangs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bangs, N.L., Johnson, J.E., Tréhu, A.M., Arsenault, M.A. (2022). Hydrate Ridge—A Gas Hydrate System in a Subduction Zone Setting. In: Mienert, J., Berndt, C., Tréhu, A.M., Camerlenghi, A., Liu, CS. (eds) World Atlas of Submarine Gas Hydrates in Continental Margins. Springer, Cham. https://doi.org/10.1007/978-3-030-81186-0_7

Download citation

Publish with us

Policies and ethics