Skip to main content

Electromagnetic Applications in Methane Hydrate Reservoirs

  • Chapter
  • First Online:
World Atlas of Submarine Gas Hydrates in Continental Margins

Abstract

Marine electromagnetic methods provide useful and independent measures for the identification and quantification of submarine gas hydrates. The resistivity of seafloor sediments, drawn from area-wide electromagnetic data, mainly depends on the sediment porosity and the nature of the pore fluid. Gas hydrates and free gas are both electrically resistive. The replacement of saline water, thus conductive pore water with resistive gas hydrate or free gas, increases the sediment resistivity and can be used to provide accurate saturation estimates if the background lithology is known. While seismic methods are predominantly used to study the distribution of submarine gas hydrates, a growing number of global field studies have demonstrated that the joint interpretation of marine seismic and electromagnetic methods improves the evaluation of submarine gas hydrate targets. This article discusses the relationship between resistivity and free gas/gas hydrate saturation levels, how the resistivity of the sediment may be measured and summarizes the status and results of current and past field studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Pet Trans AIME 146:54–62

    Google Scholar 

  • Attias E, Weitemeyer K, Minshull TA et al (2016) Controlled-source electromagnetic and seismic delineation of subseafloor fluid strictures in a gas hydrate province offshore Norway. Geophys J Int 206:1093–1110. https://doi.org/10.1093/gji/ggw188

    Article  Google Scholar 

  • Attias E, Weitemeyer K, Hölz S et al (2018) High-resolution resistivity imaging of marine gas hydrate structures by combined inversion of CSEM towed and ocean-bottom receiver data. Geophys J Int 214:1701–1714

    Google Scholar 

  • Attias E, Amalokwu K, Watts M et al (2020) Gas hydrate quantification at a pockmark offshore Norway from joint effective medium modelling of resistivity and seismic velocity. Mar Pet Geol 113:104151

    Google Scholar 

  • Avdeeva A, Commer M, Newman GA (2007) Hydrocarbon reservoir detectability study for marine CSEM methods: time domain versus frequency domain. In: SEG technical program expanded abstracts 2007, Soc Explor Geophys, pp 628–632

    Google Scholar 

  • Baba K (2005) Electrical structure in marine tectonic settings. Surv Geophys 26:701–731

    Google Scholar 

  • Baristeas N (2006) Seismische Fazies Tektonik und Gashydratvorkommen im nordwestlichen Schwarzen Meer. Diplomarbeit, Universität Hamburg, Germany, p 106

    Google Scholar 

  • Barnes PM, Lamarche G, Bialas J et al (2010) Tectonic and geological framework for gas hydrates and cold seeps on the Hikurangi subduction margin, New Zealand. Mar Geol 272(1–4):26–48

    Google Scholar 

  • Bialas J, Bohlen T, Dannowski A et al (2020) Joint interpretation of geophysical field experiments in the Danube deep sea fan, Black Sea. Mar Pet Geol 121:104551

    Google Scholar 

  • Bialas J, GreinertJ, Linke P et al (eds) (2007) RV SONNE Cruise Report SO191—New Vents Puaretanga Hou, 11.01.–23.03.2007, Wellington–Napier–Auckland, (Cruise Report No 09), Kiel, Germany. Berichte aus dem Leibniz-Institut für Meereswissenschaften an der Christian-Albrechts-Universität zu Kiel. ISSN Nr 1614-6298

    Google Scholar 

  • Bialas J (ed) (2011) RV SONNE Cruise Report SO214—NEMESYS, 09.03.–05.04.2011, Wellington–Wellington, 06.–22.04.2011, Wellington–Auckland (Cruise Report No 47), Kiel, Germany. Berichte aus dem Leibniz-Institut für Meereswissenschaften an der Christian-Albrechts-Universität zu Kiel. ISSN Nr 1614-6298

    Google Scholar 

  • Bünz S, Polyanov S, Vadakkepuliyambatta S et al (2012) Active gas venting through hydrate-bearing sediments on the Vestnesa Ridge, offshore W-Svalbard. Mar Geol 332:189–197

    Google Scholar 

  • Collett TS, Ladd J (2000) Detection of gas hydrate with downhole logs and assessment of has hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data. In: Paull CK, Matsumoto R, Wallace PJ et al (eds) Proc Ocean Drill Prog Sci Res, vol 164

    Google Scholar 

  • Connell D, Key K (2013) A numerical comparison of time and frequency-domain marine electromagnetic methods for hydrocarbon exploration in shallow water. Geophys Prospect 61:187–199

    Google Scholar 

  • Constable S (2013) Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding. Geophys Prospect 61:505–532

    Google Scholar 

  • Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52(3):289–300

    Google Scholar 

  • Constable S, Kannberg PK, Weitemeyer K (2016) Vulcan: a deep-towed CSEM receiver. Geochem Geophys 17:1042–1064. https://doi.org/10.1002/2015GC006174

  • Constable S (2010) Ten years of marine CSEM for hydrocarbon exploration. Geophysics 75(5):75A67–75A81

    Google Scholar 

  • Cook AE, Waite WF (2018) Archie’s saturation exponent for natural gas hydrate in coarse-grained reservoirs. J Geophys Res Solid Earth 123(3):2069–2089

    Google Scholar 

  • Crutchley GJ, Fraser DRA, Pecher IA et al (2015) Gas migration into gas hydrate-bearing sediments on the southern Hikurangi margin of New Zealand. J Geophys Res Solid Earth 120(2):725–743

    Google Scholar 

  • Dannowski A, Bialas J, Schwalenberg K et al (2017) Shear wave modelling of high resolution OBS data with a comparison to CSEM data in a gas hydrate environment in the Danube deep-sea fan, Black Sea. Presented at the 9th International Conference on Gas Hydrates, Denver, US, June 25–30 2017

    Google Scholar 

  • Duan S, Hölz S, Jegen M et al (2021) Study on gas hydrate targets in the Danube delta with the sputnik controlled-source electromagnetic system. Mar Pet Geol (under revision)

    Google Scholar 

  • Edwards RN (1997) On the resource evaluation of marine gas hydrate deposits using sea-floor transient electric dipole-dipole method. Geophysics 62(1):63–74

    Google Scholar 

  • Edwards RN (2005) Marine controlled source electromagnetics: principles, methodologies, future commercial applications. Surv Geophys 26:675–700

    Google Scholar 

  • Ellingsrud S, Eidesmo T, Johansen S et al (2002) Remote sensing of hydrocarbon layers by seabed logging (SBL): results from a cruise offshore Angola. Lead Edge 21(10):972–982

    Google Scholar 

  • Ellis M, Evans R, Hutchinson D et al (2008) Electromagnetic surveying of seafloor mounds in the northern Gulf of Mexico. Mar Pet Geol 25(9):960–968. https://doi.org/10.1016/j.marpetgeo.2007.12.006

    Article  Google Scholar 

  • Ellis M, Minshull TA, Sinha MC et al (2008b) Joint seismic/electrical effective medium modelling of hydrate-bearing marine sediments and an application to the Vancouver Island Margin. In: Proceedings of the 6th international conference on gas hydrates (ICGH 2008), Vancouver, British Columbia, CANADA, July 6–10 2008

    Google Scholar 

  • Evans RL (2007) Using CSEM techniques to map the shallow section of seafloor: from the coastline to the edges of the continental slope. Geophysics 72:105–116

    Google Scholar 

  • Filloux JH (1987) Instrumentation and experimental methods for oceanic studies. In: Jacobs JA (ed) Geomagnetism. Academic Press, pp 143–248

    Google Scholar 

  • Flosadottir AH, Constable S (1996) Marine controlled‐source electromagnetic sounding: 1. Modeling and experimental design. J Geophys Res Solid Earth 101(B3):5507–5517

    Google Scholar 

  • Fofonoff NP (1985) Physical Properties of seawater: a new salinity scale and equation of state for seawater. J Geophys Res 90:3332–3342

    Google Scholar 

  • Gehrmann RAS, Schwalenberg K, Riedel M et al (2016) Bayesian inversion of marine controlled source electromagnetic data offshore Vancouver Island, Canada. Geophys J Int 204:21–38

    Google Scholar 

  • Goswami BK, Weitemeyer KA, Minshull TA et al (2015) Resistivity image beneath an area of active methane seeps in the west Svalbard continental slope. Geophys J Int 207:1286–1302

    Google Scholar 

  • Goswami BK, Weitemeyer KA, Minshull TA et al (2016) A joint electromagnetic and seismic study of an active pockmark within the hydrate stability field at the Vestnesa Ridge, West Svalbard margin. J Geophys Res Solid Earth 120:6797–6822. https://doi.org/10.1002/2015JB012344

    Article  Google Scholar 

  • Goto T, Kasaya T, Machiyama H et al (2008) A marine deep-towed DC resistivity survey in a methane hydrate area, Japan Sea. Explor Geophys 39:52–59

    Google Scholar 

  • Greinert J, Lewis K, Bialas J et al (2010) Methane seepage along the Hikurangi Margin, New Zealand: overview of studies in 2006 and 2007 and new evidence from visual, bathymetric and hydroacoustic investigations. Mar Geol 272(1–4):6–25

    Google Scholar 

  • Henrys S, Ellis S, Uruski C (2003) Conductive heat flow variations from bottom simulating reflectors on the Hikurangi margin. NZ Geophys Res Lett 30(2):1065–1068

    Google Scholar 

  • Hsu S-K, Chiang C-W, Evans RL et al (2014) Marine controlled source electromagnetic method used for the gas hydrate investigation in the offshore area of SW Taiwan. J Asian Earth Sci 92:224–232

    Google Scholar 

  • Jackson PD, Taylor Smith D, Stanford PN (1978) Resistivity-porosity-particle shape relationships for marine sands. Geophysics 43(6):1250–1268

    Google Scholar 

  • Jegen M, Hoelz S, Swidinsky A et al (2014) Electromagnetic and seismic investigation of methane hydrates offshore Taiwan—the Taiflux experiment. In: OCEANS 2014-TAIPEI, IEEE, pp 1–4

    Google Scholar 

  • Jing JE, Chen K, Deng M et al (2019) A marine controlled-source electromagnetic survey to detect gas hydrates in the Qiongdongnan Basin, South China Sea. J Asian Earth Sci 171:201–212

    Google Scholar 

  • Kannberg PK, Constable S (2020) Characterization and quantification of gas hydrates in the California Borderlands. Geophys Res Lett 47:e2019GL084703

    Google Scholar 

  • Kessler JD, Reeburgh WS, Southon J et al (2006) Basin-wide estimates of the input of methane from seeps and clathrates to the Black Sea. Earth Planet Sci Lett 243:366–375

    Google Scholar 

  • Key K (2016) MARE2DEM: a 2-D inversion code for controlled-source electromagnetic and magnetotelluric data. Geophys J Int 207(1):571–588

    Google Scholar 

  • Key K, Constable S (2021) Inverted long-baseline acoustic navigation of deep-towed CSEM transmitters and receivers. Mar Geophys Res 42(1):1–15

    Google Scholar 

  • Klaucke I, Weinrebe W, Petersen CJ et al (2010) Temporal variability of gas seeps offshore New Zealand: multi-frequency geoacoustic imaging of the Wairarapa area, Hikurangi margin. Mar Geol 272:49–58

    Google Scholar 

  • Koch S, Schroeder H, Haeckel M et al (2016) Gas migration through Opouawe Bank at the Hikurangi margin offshore New Zealand. Geo Mar Lett 36(3):187–196. https://doi.org/10.1007/s00367-016-0441

    Article  Google Scholar 

  • Kretschmer K, Biastoch A, Rüpke L et al (2015) Modeling the fate of methane hydrates under global warming. Glob Biogeochem Cycles 29:610–625. https://doi.org/10.1002/2014GB005011

    Article  Google Scholar 

  • Lee MW, Collett TS (2006) A method of shaly sand correction for estimating gas hydrate saturations using downhole electrical resistivity log data, vol 5121. US Department of the Interior, US Geological Survey

    Google Scholar 

  • Lewis KB, Marshall BA (1996) Seep faunas and other indicators of methane-rich dewatering on New Zealand convergent margins. NZ J Geol Geophys 39:181–200

    Google Scholar 

  • Liu X, Flemings PB (2006) Passing gas through the hydrate stability zone at southern Hydrate Ridge, offshore Oregon. Earth Planet Sci Lett 241(1–2):211–226

    Google Scholar 

  • Lüdmann T, Wong HK, Konerding P et al (2004) Heat flow and quantity of methane deduced from a gas hydrate field in the vicinity of the Dnieper Canyon, Northwestern Black Sea. Geo Mar Lett 24(3):182–193

    Google Scholar 

  • McDougall TJ, Barker PM (2011) Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox. SCOR/IAPSO WG 127:1–28

    Google Scholar 

  • Mir R, Edwards N (2011) The assessment and evolution of offshore gas hydrate deposits using seafloor controlled source electromagnetic methodology. In: SEG technical program expanded abstracts, vol 30(1), pp 682–686.https://doi.org/10.1190/1.3628170

  • Mir R (2011) Design and deployment of a controlled source EM instrument on the NEPTUNE observatory for long-term monitoring of methane hydrate deposits. PhD thesis, University of Toronto

    Google Scholar 

  • Myer D, Constable S, Key K (2011) Broad-band waveforms and robust processing for marine CSEM surveys. Geophys J Int 184:689–698

    Google Scholar 

  • Nabighian MN (ed) (1991) Electromagnetic methods in applied geophysics, vol 2, Application, Parts A and B. Society of Exploration Geophysicists

    Google Scholar 

  • Naudts L, Greinert J, Artemov Y et al (2006) Geological and morphological setting of 2778 methane seeps in the Dnepr paleo-delta, Northwestern Black Sea. Mar Geol 227(3–4):177–199

    Google Scholar 

  • Ocean Floor Geophysics (2014) Ocean floor geophysics completes CSEM gas hydrate survey in Japan. OFG Press Release. http://www.oceanfloorgeophysics.com/news?-offset=1485156274175. Accessed 23 Oct 2014

  • Ocean Floor Geophysics (2015) Another CSEM gas hydrate survey completed in Japan. OFG Press Release. http://www.oceanfloorgeophysics.com/news?-offset=1536206743526. Accessed 1 Sep 2015

  • Ocean Floor Geophysics (2018) Another major gas hydrate CSEM mapping campaign completed in Japan. OFG Press Release. http://www.oceanfloorgeophysics.com/news?-offset=1536206743526. Accessed 26 April 2018

  • Pearson CF, Halleck PM, McGuire PL et al (1983) Natural gas hydrate deposits: a review of insitu properties. J Phys Chem 87:4180–4185

    Google Scholar 

  • Pecher IA, Henrys SA, Zhu H (2004) Seismic images of gas conduits beneath vents and gas hydrates on Ritchie Ridge, Hikurangi margin, New Zealand. NZ J Geol Geophys 47:275–279

    Google Scholar 

  • Popescu I, DeBatist M, Lericolais G et al (2006) Multiple bottom simulating reflectors in the Black Sea: potential proxies of past climate conditions. Mar Geol 227:163–176

    Google Scholar 

  • Ray A, Alumbaugh DL, Hoversten GM et al (2013) Robust and accelerated Bayesian inversion of marine controlled-source electromagnetic data using parallel tempering. Geophysics 78(6):E271–E280

    Google Scholar 

  • Reeburgh WS, Ward BB, Whalen SC et al (1991) Black Sea methane geochemistry. Deep Sea Res Part A Ocean Res Pap 38(2):S1189–S1210

    Google Scholar 

  • Riboulot V, Cattaneo A, Scalabrin C et al (2017) Control of the geomorphology and gas hydrate extent on widespread gas emissions offshore Romania. Bulletin De La Société Géologique De France 188(4):26

    Google Scholar 

  • Riboulot V, Ker S, Sultan N et al (2018) Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea. Nat Commun 9:117

    Google Scholar 

  • Riedel M, Spence GD, Chapman NR et al (2002) Seismic investigations of a vent field associated with gas hydrates, offshore Vancouver Island. J Geophys Res Solid Earth 107(B9):EPM-5

    Google Scholar 

  • Riedel M, Freudenthal T, Bergenthal M et al (2020) Physical properties, in situ temperature, and core-log seismic integration at the Danube Deep-Sea Fan, Black Sea. Mar Pet Geol 114:104192

    Google Scholar 

  • Ruppel CD, Kessler JD (2017) The interaction of climate change and methane hydrates. Rev Geophys 55:126–168

    Google Scholar 

  • Salem HS, Chilingarian GV (1999) The cementation factor of Archie’s equation for shaly sandstone reservoirs. J Pet Sci Eng 23:83–93

    Google Scholar 

  • Sava DC, Hardage BA (2007) Gas-hydrate concentration and uncertainty estimation from electrical resistivity logs: examples from Green Canyon, Gulf of Mexico. In: SEG technical program expanded abstracts 2007, pp 1–4

    Google Scholar 

  • Schmale O, Haeckel M, McGinnis DF (2011) Response of the Black Sea methane budget to massive short-term submarine inputs of methane. Biogeosciences 8:911–918

    Google Scholar 

  • Schwalenberg K, Willoughby EC, Mir R et al (2005) Marine gas hydrate electromagnetic signatures in Cascadia and their correlation with seismic blank zones. First Break 23:57–63

    Google Scholar 

  • Schwalenberg K, Haeckel M, Poort J et al (2010) Evaluation of gas hydrate deposits in an active seep area using marine controlled source electromagnetics: results from Opouawe Bank, Hikurangi Margin, New Zealand. Mar Geol 272(1–4):79–88

    Google Scholar 

  • Schwalenberg K, Rippe D, Koch S et al (2017) Marine-controlled source electromagnetic study of methane seeps and gas hydrates at Opouawe Bank, Hikurangi Margin, New Zealand. J Geophys Res Solid Earth 122:3334–3350

    Google Scholar 

  • Schwalenberg K, Yuan J, Edwards N et al (2004) Marine controlled source electromagnetic experiments to evaluate gas hydrates off the coastlines of North and South America. In: Extended abstract, Marelec conference 17–18.03.2004. London, pp 1–13

    Google Scholar 

  • Schwalenberg K, Gehrmann RAS, Bialas J et al (2020) Analysis of marine controlled source electromagnetic data for the assessment of gas hydrates in the Danube deep-sea fan, Black Sea. Mar Pet Geol 120.https://doi.org/10.1016/j.marpetgeo.2020.104650

  • Sherman D, Kannberg P, Constable S (2017) Surface towed electromagnetic system for mapping of subsea Arctic permafrost. Earth Planet Sci Lett 460:97–104

    Google Scholar 

  • Sinha MC, Patel PD, Unsworth MJ et al (1990) An active source electromagnetic sounding system for marine use. Mar Geophys Res 12(1–2):59–68

    Google Scholar 

  • Soulet G, Delaygue G, Vallet C et al (2010) Glacial hydrologic conditions in the Black Sea reconstructed using geochemical pore water profiles. Earth Planet Sci Lett 296(1–2):57–66

    Google Scholar 

  • Spangenberg E (2001) Modeling of the influence of gas hydrate content on the electrical properties of porous sediments. J Geophys Res 106:6535–6548

    Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Wiley

    Google Scholar 

  • Tréhu AM, Bohrmann G, Torres ME et al (eds) (2006) Proceeding ODP, Scientific Results 204, College Station, TX (Ocean Drilling Program)

    Google Scholar 

  • Vassilev A, Dimitrov LI (2002) Spatial and quantity evaluation of the Black Sea gas hydrates. Russ Geol Geophys 43:672–684

    Google Scholar 

  • Waite WF, Santamarina JC, Cortes DD et al (2009) Physical properties of hydrate-bearing sediments. Rev Geophys 47:RG4003. https://doi.org/10.1029/2008RG000279

  • Wang M, Deng M, Zhao Q et al (2015) Two types of marine controlled source electromagnetic transmitters. Geophys Prospect 63:1403–1419

    Google Scholar 

  • Wang L, Xiong S, Li Y et al (2019) Evaluation of gas hydrate structures: results from an experiment in the South China Sea using the marine controlled-source electromagnetic method. Bollettino di Geofisica Teorica ed Applicata 60(4)

    Google Scholar 

  • Ward SH, Hohmann GW (1988) Electromagnetic theory for geophysical applications. In: Nabighian NM (ed) Electromagnetic methods in applied geophysics. Soc Explor Geophys 131–311

    Google Scholar 

  • Weitemeyer K, Constable S (2010) Mapping shallow seafloor structure with marine CSEM, examples from the Gulf of Mexico gas hydrate experiment. First Break 6(28):97–102

    Google Scholar 

  • Weitemeyer KA, Constable SC, Key KW et al (2006) First results from a marine controlled-source electromagnetic survey to detect gas hydrates offshore Oregon. Geophys Res Lett 33:L03304. https://doi.org/10.1029/2005GL024896

    Article  Google Scholar 

  • Weitemeyer K, Constable S, Shelander D et al (2017) Mapping the resistivity structure of Walker Ridge 313 in the Gulf of Mexico using the marine CSEM method. Mar Pet Geol 88:1013–1031

    Google Scholar 

  • Weitemeyer KA, Constable S, Trehu AM (2011) A marine electromagnetic survey to detect gas hydrate at Hydrate Ridge, Oregon. Geophys J Int 187(1):45–62. https://doi.org/10.1111/j.1365-246X.2011.05105.x

  • Winsauer WO, Shearin HM, Masson PH et al (1952) Resistivity of Brine saturated sands in relation to pore geometry. Am Assoc Pet Geol Bull 36(2):253–277

    Google Scholar 

  • Worthington PF (1993) The uses and abuses of the Archie equations, 1: the formation factor-porosity relationship. J Appl Geophys 30:215–228

    Google Scholar 

  • Yuan J, Edwards RN (2000) The assessment of marine gas hydrates through electrical remote sounding: hydrate without a BSR? Geophys Res Lett 27:2397–2400

    Google Scholar 

  • Zander T, Haeckel M, Berndt C et al (2017) On the origin of multiple BSRs in the Danube deep-sea fan, Black Sea. Earth Planet Sci Lett 462:15–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Schwalenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schwalenberg, K., Jegen, M. (2022). Electromagnetic Applications in Methane Hydrate Reservoirs. In: Mienert, J., Berndt, C., Tréhu, A.M., Camerlenghi, A., Liu, CS. (eds) World Atlas of Submarine Gas Hydrates in Continental Margins. Springer, Cham. https://doi.org/10.1007/978-3-030-81186-0_6

Download citation

Publish with us

Policies and ethics