Abstract
For the past 50 years, gas hydrates have been regarded by scientists as part of the hydrocarbon reserves, particularly at governmental institutions. A better understanding of the processes controlling the distribution and dynamics of gas hydrates in nature, especially their sensitivity to changes in gas composition, pressure and temperature, requires both theoretical knowledge of their stability and dynamic behavior and knowledge of how gas hydrates form and where they occur in the sediment. Geophysical data, geochemical data and thermodynamic models indicate that both the rate of response and the total integrated response to climate change in the ocean depend on the location and forms in which hydrates are distributed. Thus, mapping gas hydrates by indirect geophysical methods or through dedicated drilling campaigns is fundamental to all research involving gas hydrates. This includes studies of their role in climate change, their consequences for slope stability, their role at the base of the food web for benthic ecosystems and their potential as a future energy resource. Here we provide a brief introduction to the occurrence of gas hydrates on Earth, and how this information may assist in detecting them on other planetary bodies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andreassen K, Berteussen K, Sognnes H et al (2003) Multicomponent ocean bottom cable data in gas hydrate investigation offshore of Norway. J Geophys Res 108(B8):2399. https://doi.org/10.1029/2002JB002245
Archer D, Buffett B (2005) Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing. Geochem Geophys 6(3). https://doi.org/10.1029/2004GC000854
Archer D, Buffett B, Brovkin V (2009) Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc Natl Acad Sci 106(49):20596–20601. https://doi.org/10.1073/pnas.0800885105
Beaudoin YC, Dallimore SR, Boswell R (eds) (2014a) Frozen heat: a UNEP global outlook on methane gas hydrates. Vol 2. United Nations Environment Programme, GRID-Arendal
Beaudoin YC, Waite WF, Boswell R et al (2014b) Frozen heat, vol 1, pp 1–80. United Nations Environment Programme, GRID-Arendal
Becerra P, Byrne S, Sori MM et al (2016) Stratigraphy of the north polar layered deposits of Mars from High Resolution Topography. J Geophys Res 121:1445–1471. https://doi.org/10.1002/2015JE004992
Becerra P, Sori MM, Byrne S (2017) Signals of astronomical climate forcing in the exposure topography of the North Polar Layered Deposits of Mars. Geophys Res Lett 44(1):62–70. https://doi.org/10.1002/2016GL071197
Bibring JP, Langevin Y, Poulet F et al (2004) Perennial water ice identified in the south polar cap of Mars. Nature 428:627–630. https://doi.org/10.1038/nature02461
Bockelée-Morvan D, Biver N, Colom P et al (2004) The outgassing and composition of Comet 19P/Borrelly from radio observations. Icarus 167(1):113–128. https://doi.org/10.1016/j.icarus.2003.04.001
Boetius A, Ravenschlag K, Schubert CJ et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626
Boetius A, Wenzhöfer F (2013) Seafloor oxygen consumption fuelled by methane from cold seeps. Nat Publ Group 1–10. https://doi.org/10.1038/ngeo1926
Borowski WS, Paull CK, Ussler W (1999) Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates. Mar Geol 159:131–154. https://doi.org/10.1016/S0025-3227(99)00004-3
Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4(4):1206–1215. https://doi.org/10.1039/C0EE00203H
Boswell R, Collett TS, Frye M et al (2012) Subsurface gas hydrates in the northern Gulf of Mexico. Mar Pet Geol 34(1):4–30. https://doi.org/10.1016/j.marpetgeo.2011.10.003
Boswell R, Hancock S, Yamamoto K et al (2020) 6—natural gas hydrates: status of potential as an energy resource. In: Letcher TM (ed) Future energy, 3rd edn. Elsevier, pp 111–131
Bouquet A, Mousis O, Waite JH et al (2015) Possible evidence for a methane source in Enceladus’ ocean. Geophys Res Lett 42(5):1334–1339. https://doi.org/10.1002/2014GL063013
Bryn P, Berg K, Stoker MS et al (2005) Contourites and their relevance for mass wasting along the Mid-Norwegian Margin. Mar Pet Geol 22(1–2):85–96. https://doi.org/10.1016/j.marpetgeo.2004.10.012
Bünz S, Mienert J (2004) Acoustic imaging of gas hydrate and free gas at the Storegga Slide. J Geophys Res 109(B4):4102–4115. https://doi.org/10.1029/2003JB002863
Bünz S, Mienert J, Vanneste M et al (2005) Gas hydrates at the Storegga Slide: constraints from an analysis of multicomponent, wide-angle seismic data. Geophysics 70(5):B19–B34. https://doi.org/10.1190/1.2073887
Carr MH, Head JW (2003) Oceans on Mars: an assessment of the observational evidence and possible fate. J Geophys Res E: Planets 108(5). https://doi.org/10.1029/2002je001963
Chand S, Minshull TA (2003) Seismic constraints on the effects of gas hydrate on sediment physical properties and fluid flow: a review. Geofluids 3:275–289
Chastain BK, Chevrier V (2007) Methane clathrate hydrates as a potential source for martian atmospheric methane. Planet Space Sci 55:1246–1256
Christian S, Holt JW, Byrne S et al (2013) Integrating radar stratigraphy with high resolution visible stratigraphy of the north polar layered deposits. Mars Icarus 226(2):1241–1251. https://doi.org/10.1016/j.icarus.2013.07.003
Clifford SM, Lasue J, Heggy E et al (2010) Depth of the Martian cryosphere: revised estimates and implications for the existence and detection of subpermafrost groundwater. J Geophys Res 115(E7):1–17. https://doi.org/10.1029/2009je003462
Clifford SM, Parker TJ (2001) The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the Northern plains. Icarus 154(1):40–79. https://doi.org/10.1006/icar.2001.6671
Collett TS (1993) Natural Gas Production from Arctic Gas Hydrates. In: Howell DG, Wiese K, Fanelli M et al (eds) The future of energy gases. United States Geological Survey, Washington, pp 299–311
Collett TS (1999) Detailed evaluation of gas hydrate reservoir properties using JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well downhole well-log displays (1999) Bull Geol Surv Canada (544):295–311
Collett TS, Boswell R, Lee MW et al (2012) Evaluation of long-term gas hydrate-production testing locations on the Alaska North Slope. SPE Reserv Eval Eng 15(2):243–264
Collett TS, Johnson AH, Knapp CC and Boswell R (2009) Natural gas hydrates: a review. In: Collett T, Johnson A, Knapp C et al (eds) Natural gas hydrates—Energy resource potential and associated geologic hazards. AAPG Memoir 89:146– 219
Collett TS, Lee MW, Agena W et al (2011) Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope. Mar Pet Geol 28(2):279–294
Crutchley GJ, Klaeschen L, Bialas J et al (2014) The impact of fluid advection on gas hydrate stability: investigations at sites of methane seepage offshore Costa Rica. Earth Planet Sci Lett 401:95–109. https://doi.org/10.1016/j.epsl.2014.05.045
Dallimore SR, Uchida T, Collett TS (eds) (1999) Scientific results from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, Mackenzie Delta, Northwest Territories, Canada. Geol Sur Canada Bull 544
Dallimore SR, Wright JF, Nixon FM et al (2008) Geologic and porous media factors affecting the 2007 production response characteristics of the JOGMEC/NRCAN/AURORA mallik gas hydrate production research well. In: Proceedings, 6th international conference on gas hydrates, 6–10 July 2008, Vancouver, British Columbia, Canada
Davidsson BJR, Sierks H, Guttler C et al (2016) The primordial nucleus of comet 67P/Churyumov-Gerasimenko. Astron Astrophys 63. https://doi.org/10.1051/0004-6361/201526968
De Batist M, Klerkx J, Van Rensbergen P et al (2002) Active hydrate destabilisation in Lake Baikal, Siberia? Terra Nova 14(6):436–442
Decourt B, Alias S, Debarre R et al (2015) Taking the heat out of the burning-ice debate: Potential and future of Gas Hydrates. In: SPE Asia Pacific unconventional resources conference and exhibition. Society of Petroleum Engineers
Delescluse M, Nedimović MR, Louden KE (2011) 2D waveform tomography applied to long-streamer MCS data from the Scotian Slope. Geophysics 76(4):B151–B163. https://doi.org/10.1190/1.3587219
Dessandier PA, Borrelli C, Yao H et al (2020) Foraminiferal δ18O reveals gas hydrate dissociation in Arctic and North Atlantic ocean sediments. Geo-Mar Lett 40:507–523. https://doi.org/10.1007/s00367-019-00635-6
De Toffoli B, Pozzobon R, Massironi M et al (2019) Surface expressions of subsurface sediment mobilization rooted into a gas hydrate-rich cryosphere on Mars. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-019-45057-7
Dickens GR (2011) Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Clim past 7(3):831–846. https://doi.org/10.5194/cp-7-831-2011
Dickens GR, Castillo MM, Walker JCG (1997) A blast of gas in the latest Paleocene: simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology 25(3):259–262. https://doi.org/10.1130/0091-7613(1997)0252.3.CO;2
Egeberg PK, Dickens GR (1999) Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997, Blake Ridge. Chem Geol 153:53–79
Ehlert D, Zickfeld K (2017) What determines the warming commitment after cessation of CO2 emissions? Environ Res Lett 12(1). https://doi.org/10.1088/1748-9326/aa564a
Etiope G, Oehler DZ (2019) Methane spikes, background seasonality and non-detections on Mars: ageological perspective. Planet Space Sci 168:52–61. https://doi.org/10.1016/j.pss.2019.02.001
Etiope G, Oehler DZ, Allen CC (2011) Methane emissions from earths degassing: implications for Mars. Planet Space Sci 59(2–3):182–195. https://doi.org/10.1016/j.pss.2010.06.003
Ferré B, Jansson PG, Moser M et al (2020) Reduced methane seepage from Arctic sediments during cold bottom-water conditions. Nat Geosci 13(2):144–148. https://doi.org/10.1038/s41561-019-0515-3
Formisano V, Atreya S, Encrenaz T et al (2004) Detection of methane in the atmosphere of Mars. Science 306(5702):1758–1761. https://doi.org/10.1126/science.1101732
Geminale A, Formisano V, Sindoni G (2011) Mapping methane in Martian atmosphere with PFS-MEx data. Planet Space Sci 59:137–148
Ginsburg GD, Soloviev VA (1998) Submarine gas hydrates. ISBN 5–8894–013–9 copyright @ 1994. Translated from the Russian book edited by V.L. Ivanov VNII Okeangeologia, St.Petersburg 1994
Giuranna M, Viscardy S, Daerden F et al (2019) Independent confirmation of a methane spike on Mars and a source region east of Gale Crater. Nat Geosci 12(5):326–332. https://doi.org/10.1038/s41561-019-0331-9
Goldberg DS, Collett TS, Hyndman RD (2000) Ground truth: In-situ properties of hydrate. In: Max MD (ed) Natural gas hydrate. pp 295–310
Goldberg DS, Kleinberg RL, Weinberger JL et al (2010) Evaluation of natural gas-hydrate systems using borehole logs. In: Riedel M, Willoughby EC, Chopra S (eds) Geophysical characterization of gas hydrates. pp 239–261
Goldberg DS, Saito S (1998) Detection of gas hydrates using downhole logs. In: Henriet J-P, Mienert J (eds) Gas hydrates: relevance to world margin stability and climate change. London: Geological Society of London, vol 137, pp 129–132. https://doi.org/10.1144/GSL.SP.1998.137.01.09
Haflidason H, Lien R, Sejrup HP et al (2005) The dating and morphometry of the Storegga Slide. Mar Pet Geol 22(1–2):123–136. https://doi.org/10.1016/j.marpetgeo.2004.10.008
Helgerud MB, Dvorkin J, Nur A (2000) Rock physics characterization for gas hydrate reservoirs - elastic properties. Ann NY Acad Sci 912:116–125
Helgerud MB, Dvorkin J, Nur A et al (1999) Elastic-wave velocity in marine sediments with gas hydrates: effective medium modeling. Geophys Res Lett 26:2021–2024
Henriet JP, Mienert J (1998) Gas Hydrates: Relevance for World margin stability and climate change. Geol Soc London Spec Pub 137. https://doi.org/10.1144/GSL.SP.1998.137.01.27
Higgins JA, Schrag DP (2006) Beyond methane: Towards a theory for the Paleocene-Eocene thermal maximum. Earth Planet Sci Lett 245(3–4):523–537. https://doi.org/10.1016/j.epsl.2006.03.009
Holland M, Schultheiss P, Roberts J et al (2008) Observed gas hydrate morphologies in marine sediments. In: Presented at the the international conference on gas hydrates ICGH, Vancouver, British Columbia, CA, pp 1–7
Horgan BHN, Anderson RB, Dromart G et al (2020) The mineral diversity of Jezero crater: Evidence for possible lacustrine carbonates on Mars. Icarus 339. https://doi.org/10.1016/j.icarus.2019.113526
Hvidberg CS, Fishbaugh KE, Winstrup M et al (2012) Reading the climate record of the Martian polar layered deposits. Icarus 221(1):405–419. https://doi.org/10.1016/j.icarus.2012.08.009
Jadhawar P, Yang J, Chapoy A, Tohidi B (2021) Sequestration and storage in methane hydrate reservoirs combined with clean methane energy recovery. Energy Fuels 35(2):1567–1579. https://doi.org/10.1021/acs.energyfuels.0c02839
Jansson P, Triest J, Grilli R et al (2019) High-resolution underwater laser spectrometer sensing provides new insights into methane distribution at an Arctic seepage site. Ocean Sci 15(4):1055–1069. https://doi.org/10.5194/os-15-1055-2019
Johnson AH (2011) Global resource potential of gas hydrate—a new calculation. Fire in the Ice 11(2):1–4
Kalousová K, Sotin C (2020) The insulating effect of methane clathrate crust on Titan’s thermal evolution. Geophys Res Lett 47(13):1–9. https://doi.org/10.1029/2020GL087481
Kamata S, Nimmo F, Sekine Y et al (2019) Pluto’s ocean is capped and insulated by gas hydrates. Nat Geosc 12:407–410. https://doi.org/10.1038/s41561-019-0369-8
Kastner M, Kvenvolden KA, Whiticar MJ et al (1995) Relationship between pore fluid chemistry and gas hydrates associated with bottom-simulating reflectors at the Cascadia Margin, Sites 889 and 892. In: Carson B, Westbrook GK, Musgrave RJ et al (eds) Proceedings of the Ocean Drilling Program, Scientific Results 146(Pt 1), pp175–187
Kayen RE, Lee HJ (1991) Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort Sea Margin. Mar Geotechnol 10:125–141
Kennett JP, Cannariato KG, Hendy IL et al (2000) Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science 288(5463):128–133. https://doi.org/10.1126/science.288.5463.128
Kennett JP, Cannariato KG, Hendy IL et al (2003) Methane hydrates in Quaternary climate change: the clathrate gun hypothesis. Am Geophys Union 216. https://doi.org/10.1029/054SP01
Kieffer SW, Lu X, Bethke CM et al (2006) A clathrate reservoir hypothesis for enceladus south polar plume. Science 314(5806):1764–1766. https://doi.org/10.1126/science.1133519
Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Ann Rev Microbiol 63:311–334. https://doi.org/10.1146/annurev.micro.61.080706.093130
Komatsu G, Ori GG, Cardinale M et al (2011) Roles of methane and carbon dioxide in geological processes on Mars. Planet Space Sci 59(2–3):169–181. https://doi.org/10.1016/j.pss.2010.07.002
Kretschmer K, Biastoch A, Rüpke L et al (2015) Modeling the fate of methane hydrates under global warming. Global Biogeochem Cy 29(5):610–625. https://doi.org/10.1002/2014GB005011
Kvenvolden KA (1993) Gas hydrates as a potential energy source—a review of their methane content. In: Howell DG (ed) The future of energy gases. US Geological Survey Professional Paper 1570, pp 555–61
Kvenvolden KA (1988) Methane hydrates and global climate
Kvenvolden KA, Claypool GE, Threlkeld .https://www.sciencedirect.com/science/article/abs/pii/0146638084900913”, CN et al (1984) Geochemistry of a naturally occurring massive marine gas hydrate. Organ Geochem 6:703–713. https://doi.org/10.1016/0146-6380(84)90091-3
Kvenvolden KA, Kastner M (1990) Gas hydrates of the Peruvian outer continental margin. In: Suess E, von Huene R et al (eds) Proceedings of the ocean drilling program, Scientific Results, vol 112, pp 517–526
Kvenvolden KA, McDonald TJ (1985) Gas Hydrat. http://deepseadrilling.org/84/volume/dsdp84_23.pdf of the Middle America Trench. http://deepseadrilling.org/84/volume/dsdp84_23.pdf, Deep Sea Drilling Project Leg 84. https://doi.org/10.2973/dsdp.proc.84.123.1985
Leynaud D, Sultan N, Mienert J (2007) The role of sedimentation rate and permeability in the slope stability of the formerly glaciated Norwegian continental margin: the Storegga slide model. Landslides 4(4):297–309. https://doi.org/10.1007/s10346-007-0086-z
Long PE, Holland M, Schultheiss P et al. (2010) Infrared imaging of gas-hydrate-bearing cores: state of the art and future prospects. In: Riedel M, Willoughby EC, Chopra S (eds) Geophysical characterization of gas hydrates. Soc Explor Geophys 217–232. https://doi.org/10.1190/1.9781560802197.ch14
Luspay-Kuti A, Hässig M, Fuselier SA et al (2015) Composition-dependent outgassing of comet 67P/Churyumov-Gerasimenko from ROSINA/DFMS: implications for nucleus heterogeneity. Astron Astrophys 583:2–9. https://doi.org/10.1051/0004-6361/201526205
MacDonald IR, Bender LC, Vardaro M et al (2005) Thermal and visual time-series at a seafloor gas hydrate deposit on the Gulf of Mexico slope. Earth Planet Sci Lett 233(1):45–59
Makogen YF, Omelchenko RY (2013) Commercial gas production from Messoyakha deposit in hydrate conditions. J Nat Gas Sci Eng 11:1–6. https://doi.org/10.1016/j.jngse.2012.08.002
Maslin M, Owen M, Betts R et al (2010) Gas hydrates: past and future geohazard? philosophical transactions of the royal society a: mathematical. Phys Engi Sci 368(1919):2369–2393. https://doi.org/10.1130/G22522.1
Masson-Delmotte V, Zhai P, Pörtner HO et al (2018) Global warming of 1.5 C. In: An IPCC special report. World Meteorological Organization, Geneva (2018)
Mathews MA, Huene von R (1985) Site 570 Methane hydrate zone. In: von Huene R, Aubouin J , Shipboard Scientific Party (eds) Deep sea drilling project initial reports, vol 84, pp 773–790
McDermott JM, Seewald JS, German CR et al (2015) Pathways for abiotic organic synthesis at submarine hydrothermal fields. Proc Natl Acad Sci 112(25):7668–7672. https://doi.org/10.1073/pnas.1506295112
McEwen AS, Ojha L, Dundas CM et al (2011) Seasonal flows on warm martian slopes. Science 333(6043):740–743. https://doi.org/10.1126/science.1204816
Mienert J, Berndt C, Laberg JS (2002) Submarine Landslides on Continental Margins. In: Wefer G, Billet G, Hebbel D (eds) Ocean margin systems. Springer, Heidelberg, pp 179–193
Mienert J, Vanneste M, Bünz S et al (2005) Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide. Mar Pet Geol 22:233–244
Milkov AV, Etiope G (2005) Global methane emission through mud volcanoes and its past and present impact on the Earth’s climate—a comment. Int J Earth Sci 94(3):490–492. https://doi.org/10.1007/s00531-005-0480-5
Milkovich SM, Plaut JJ (2020) Martian South Polar layered deposit stratigraphy and implications for accumulation history. J Geophys Res 113(E6)
Mousis O, Chassefière E, Lasue J et al (2013) Volatile trapping in martian clathrates. Space Sci Rev 174(1–4):213–250. https://doi.org/10.1007/s11214-012-9942-9
Mumma MJ, Villanueva GL, Novak RE et al (2009) Strong release of methane. Science 323:1041–1045. https://doi.org/10.1126/science.1165243
Oehler DZ, Allen CC (2010) Evidence for pervasive mud volcanism in Acidalia Planitia. Mars Icarus 208(2):636–657. https://doi.org/10.1016/j.icarus.2010.03.031
Ohgaki K, Takano K, Sangawa H et al (1996) Methane exploitation by carbon dioxide from gashydrates. J Chem Eng Japan 29(3):478–483. https://doi.org/10.1252/jcej.29.478
Onstott TC, McGown D, Kessler J et al (2006) Martian CH4: sources, flux, and detection. Astrobiology 6:2. https://doi.org/10.1089/ast.2006.6.377
Pandey G, Sangwai JS (2020) High pressure rheological studies of methane hydrate slurries formed from water-hexane, water-heptane, and water-decane multiphase systems. J Nat Gas Sci Eng 81:103365
Parkes RJ, Cragg BA, Bale SJ et al (1994) Deep bacterial Biosphere in Pacific-Ocean Sediments. Nature 371(6496):410–413
Paull CK, Dallimore SR, Caress DW et al (2021) A 100-km wide slump along the upper slope of the Canadian Arctic was likely preconditioned for failure by brackish pore water flushing. Mar Geol 435. https://doi.org/10.1016/j.margeo.2021.106453
Paull CK, Matsumoto R, Wallace PJ et al (1996) Proceedings of the ocean drilling program. Initial Rep, vol 164
Piñero E, Marquardt M, Hensen C et al (2013) Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences 10(2):959–975. https://doi.org/10.5194/bg-10-959-2013
Porco CC, Helfenstein P, Thomas PC et al (2006) Cassini observes the active south pole of Enceladus. Science 311:1393–1401. https://doi.org/10.1126/science.1123013
Rehder G, Schneider von Deimling J, cruise participants (2008) RV Sonne Cruise report SO 196, SUMSUN 2008, Suva Guam Okinawa trough Manila, 19 February–26 March. https://epic.awi.de/id/eprint/29645/, https://epic.awi.de/id/eprint/29645/, Leibniz Institut für Ostseeforschung, Sektion Meereschemie, Warnemünde, Bremerhaven, PANGAEA. hdl:10013/epic.35734
Riedel M, Willoughby E, Chopra S (eds) (2010) Geophysical characterization of gas hydrates. In: society for exploration geophysics. Geophys Dev Ser #14:412
Rubin M, Altwegg K, Balsiger H (2015) Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature. Science 348(6231):232–235. https://doi.org/10.1126/science.aaa6100
Ruppel CD, Herman BM, Brothers LL et al (2016) Subsea ice‐bearing permafrost on the U.S. Beaufort Margin: 2. Borehole constraints. Geochem Geophys 17(11):4333–4353. https://doi.org/10.1002/2016GC006582
Ruppel CD, Kessler JD (2017) The interaction of climate change and methane hydrates. Rev Geophys 55:126–168. https://doi.org/10.1002/2016RG000534
Sahling H, Borowski C, Escobar-Briones E et al (2016) Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at the Campeche Knolls, southern Gulf of Mexico. Biogeosciences 13(15):4491–4512. https://doi.org/10.5194/bg-13-4491-2016
Saito S, Goldberg D (1997) Evolution of tectonic compaction in the Barbados accretionary prism: estimates from logging-while-drilling. Earth Planet Sci Lett 148:423–432. https://doi.org/10.1016/S0012-821X(97)00056-3
Scheller EL, Ehlmann BL, Renyu H et al (2021) Log-term drying of Mars by sequestration of ocean-scale volumes of water in the crust. Science 7717
Scherwath M, Thomsen L, Riedel M et al (2019) Ocean observatories as a tool to advance gas hydrate research. Earth Space Sci 6:2644–2652. https://doi.org/10.1029/2019EA000762
Schmitt B, Espinasse S, Grim JA et al (1989) Laboratory studies of cometary ice analogues. Phys Mech Cometary Mater 302:68–70
Shipley TH, Houston MH (1979) Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises. AAPG Bull 63. https://doi.org/10.1306/2F91890A-16CE-11D7-8645000102C1865D
Singh SC, Minshull TA, Spence GD (1993) Velocity structure of a gas hydrate reflector. Science 260(5105):204–207
Skinner JA, Mazzini A (2009) Martian mud volcanism: terrestrial analogs and implications for formational scenarios. Mar Pet Geol 26(9):1866–1878. https://doi.org/10.1016/j.marpetgeo.2009.02.006
Sloan ED Jr (1998) Gas hydrates: review of physical/chemical properties. Energ Fuel 12(2):191–196
Sloan ED, Koh C (2008) Clathrate hydrates of natural gases, 3rd edn. CRC Press
Snyder F, Dutta N, Hutchinson D et al. (2004) seismic analysis and characterization of gas hydrates in the Northern Deepwater Gulf of Mexico. AAPG Bull 88:13. https://www.researchgate.net/publication/237747646
Sohl F, Choukroun M, Kargel J et al (2010) Subsurface water oceans on icy satellites: chemical composition and exchange processes. Space Sci Rev 153(1–4):485–510. https://doi.org/10.1007/s11214-010-9646-y
Stoll RD, Ewing J, Bryan GM (1971) Anomalous wave velocities in sediments containing gas hydrates. J Geophys Res 76(8):2090–2094. https://doi.org/10.1029/JB076i008p02090
Sultan N, Cochonat P, Foucher JP et al (2004) Effect of gas hydrates melting on seafloor slope instability. Mar Geol 213(1–4):379–401. https://doi.org/10.1016/j.margeo.2004.10.015
Thomsen L, Barnes C, Best M et al (2012) Ocean circulation promotes methane release from gas hydrate outcrops at the NEPTUNE Canada Barkley Canyon node. Geophys Res Lett 39(16):1–6. https://doi.org/10.1029/2012GL052462
Tomaru H, Torres ME, Matsumoto R et al (2006) Effect of massive gas hydrate formation on the water isotopic fractionation of the gas hydrate system at Hydrate Ridge, Cascadia margin, offshore Oregon. Geochem Geophys 7:Q10001. https://doi.org/10.1029/2005GC001207
Torres ME, Tréhu AM, Cespedes N et al (2008) Methane hydrate formation in turbidite sediments of northern Cascadia, IODP Expedition 311. Earth Planet Sci Lett 271:170–180
Torres ME, Wallmann K, Tréhu AM et al (2004) Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of Hydrate Ridge, Cascadia margin off Oregon. Earth Planet Sci Lett 226(1–2):225–241. https://doi.org/10.1016/j.epsl.2004.07.029
Treude T, Boetius A, Knittel K et al (2003) Anaerobic oxidation of methane above gas hydrates (Hydrate Ridge, OR). Mar Ecol Prog Ser 264:1–14
Tréhu AM (2006) Gas hydrates in marine sediments: Lessons from scientific ocean drilling. Oceanography 19(4):124–142
Tréhu AM, Flemings P, Bangs N et al (2004a) Feeding methane vents and gas hydrate deposits at south Hydrate Ridge. Geophys Res Lett 31(23):L23310. https://doi.org/10.1029/2004GL021286
Tréhu AM, Long PE, Torres M et al (2004b) Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204. Earth Planet Sci Lett 222(3):845–862
Tucholke BE, Bryna GM, Ewing JI (1977) Gas-hydrate horizons detected in seismic-profiler data from the western North Atlantic. AAPG Bull 61:698–707
Ussler W, Paull CK (1995) Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition. Geo-Mar Lett 15:37–44
Waite WF, Ruppel CD, Boze L-G et al (2020) Preliminary global database of known and inferred gas hydrate locations. US Geol Surv Data Release. https://doi.org/10.5066/P9llFVJM
Webster CR, Mahaffy PR, Atreya SK et al (2015) Mars methane detection and variability at Gale crater. Science 347(6220):415–417
Weinberger JL, Brown KM, Long PE (2005) Painting a picture of gas hydrate distribution with thermal images. Geophys Res Lett 32:L04609. https://doi.org/10.1029/2004GL021437
Westbrook GK, Carson B, Musgrave RJ et al (1994) Proc ODP, Init Repts, 146 (Pt 1): College station. TX (ocean Drilling Program). https://doi.org/10.2973/odp.proc.ir.146-1.1994
Westbrook GK, Chand S, Rossi G et al (2008) Estimation of gas hydrate concentration from multi-component seismic data at sites on the continental margins of NW Svalbard and the Storegga region of Norway. Mar Pet Geol 25(8):744–758. https://doi.org/10.1016/j.marpetgeo.2008.02.003
Yamamoto K, Terao Y, Fujii T et al (2014) Operational overview of the first offshore production test of methane hydrates in the Nankai Trough. OTC-25243, pp 11
You K, Flemings PB, Malinverno A et al (2019) Mechanisms of methane hydrate formation in geological systems. Rev Geophys 57(4):1146–1196. https://doi.org/10.1029/2018RG000638
Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol 1–21. https://doi.org/10.3389/fbioe.2016.00004&domain=pdf&date_stamp=2016-01-20
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Mienert, J., Tréhu, A.M., Berndt, C., Camerlenghi, A., Liu, CS., Massironi, M. (2022). Finding and Using the World’s Gas Hydrates. In: Mienert, J., Berndt, C., Tréhu, A.M., Camerlenghi, A., Liu, CS. (eds) World Atlas of Submarine Gas Hydrates in Continental Margins. Springer, Cham. https://doi.org/10.1007/978-3-030-81186-0_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-81186-0_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81185-3
Online ISBN: 978-3-030-81186-0
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)