Skip to main content

Abstract

The minimum distribution of gas hydrates on the US Atlantic margin is from offshore South Carolina northward to the longitude of Shallop Canyon on the southern New England margin. Few wells have logged or sampled the gas hydrate zone on this margin, meaning that the presence of gas hydrates is inferred based primarily on seismic data that reveal bottom simulating reflections, mostly at water depths greater than 2000 m. The highest hydrate saturation levels most likely exist in the sandy sediment of the Whale Prospect offshore New Jersey, New York and the western part of Cape Cod, an area characterized by strong bottom simulating reflections. Such reflections are also imaged on the well-studied Blake Ridge, where fine-grained sediment host lower hydrate saturation levels, which have been constrained by drilling. Within the section of the margin stretching from south of Cape Hatteras nearly to Hudson Canyon, the diagnostic seismic reflections are hard to discern, making inferences about gas hydrate distributions more uncertain. The recognition of currently unmapped bottom simulating reflections or top of gas features seaward of the 2000 m bathymetric contour (e.g., Cape Fear Slide, Currituck slide, beneath deepwater gas seeps) within the Mid-Atlantic Bight expands the area of probable gas hydrates on this margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arsenault MA, Miller NC, Hutchinson DR et al (2017) Geophysical data collected along the Atlantic continental slope and rise 2014, US Geological Survey Field Activity 2014-011-FA, cruise MGL1407. US Geological Survey data release. https://doi.org/10.5066/F7V69HHS

  • Baldwin WE, Foster DS, Bergeron EM et al (2020a) Multichannel seismic-reflection and navigation data collected using Sercel GI guns and Geometrics GeoEel digital streamers during the Mid-Atlantic Resource Imaging Experiment (MATRIX), USGS field activity 2018-002-FA. US Geological Survey data release. https://doi.org/10.5066/P91WP1RZ

  • Baldwin WE, Moore EM, Worley CR et al (2020b) Marine geophysical data collected to support methane seep research along the US Atlantic continental shelf break and upper continental slope between the Baltimore and Keller Canyons during US Geological Survey Field Activities 2017-001-FA and 2017-002-FA. US Geological Survey data release. https://doi.org/10.5066/P9Y1MSTN

  • Bangs N, Musgrave RJ, Tréhu AM (2005) Upward shifts in the southern Hydrate Ridge gas hydrate stability zone following postglacial warming, offshore Oregon. J Geophys Res 110(B03102):1–13. https://doi.org/10.1029/2004JB003293

    Article  Google Scholar 

  • BOEM (2012) Assessment of in-place gas hydrate resources of the lower 48 United States outer continental shelf Fact Sheet, RED2012-01, p 4. https://www.boem.gov/sites/default/files/uploadedFiles/BOEM/Oil_and_Gas_Energy_Program/Resource_Evaluation/Gas_Hydrates/BOEM-FactSheetRED_2012-01.pdf

  • Boswell R, Collett TS (2011) Current perspectives on gas hydrate resources. Energy Environ Sci 4(4):1206–1215. https://doi.org/10.1039/C0EE00203H

    Article  Google Scholar 

  • Bourque JR, Robertson CM, Brooke S et al (2017) Macrofaunal communities associated with chemosynthetic habitats from the US Atlantic margin: a comparison among depth and habitat types. Deep Sea Res Part II Top Stud Oceanogr 137:42–55. https://doi.org/10.1016/j.dsr2.2016.04.012

  • Brothers DS, Ruppel C, Kluesner JW et al (2014) Seabed fluid expulsion along the upper slope and outer shelf of the US Atlantic continental margin. Geophys Res Lett 41(1):96–101. https://doi.org/10.1002/2013gl058048

    Article  Google Scholar 

  • Brothers DS, ten Brink US, Andrews BD et al (2013a) Geomorphic characterization of the US Atlantic continental margin. Mar Geol 338:46–63. https://doi.org/10.1016/j.margeo.2012.12.008

  • Brothers LL, van Dover CL, German CR et al (2013b) Evidence for extensive methane venting on the southeastern US Atlantic margin. Geology G34217:1. https://doi.org/10.1130/g34217.1

    Article  Google Scholar 

  • Brown HE, Holbrook WS, Hornbach MJ et al (2006) Slide structure and role of gas hydrate at the northern boundary of the Storegga Slide, offshore Norway. Mar Geol 229(3–4):179–186. https://doi.org/10.1016/j.margeo.2006.03.011

    Article  Google Scholar 

  • Carpenter G (1981) Coincident sediment slump/clathrate complexes on the US Atlantic continental slope. Geo-Mar Lett 1(1):29–32. https://doi.org/10.1007/BF02463298

    Article  Google Scholar 

  • Cashman KV, Popenoe P (1985) Slumping and shallow faulting related to the presence of salt on the Continental Slope and Rise off North Carolina. Mar Pet Geol 2(3):260–271. https://doi.org/10.1016/0264-8172(85)90016-9

  • Claypool GE, Kaplan IR (1974) The origin and distribution of methane in marine sediment. In: Kaplan IR (ed) Natural gases in marine sediment, vol 3, pp 99–140

    Google Scholar 

  • Claypool GE, Presley BJ, Kaplan IR (1973) Gas analyses in sediment samples from legs 10, 11, 13, 14, 15, 18 and 19. Inst Geophys Planet Phys 1165:879–884

    Google Scholar 

  • Collett TS (1995) Gas hydrate resources of the United States. In: Gautier DL, Dolton GL (eds) National Assessment of US Oil & Gas Resources (CD-ROM)

    Google Scholar 

  • Collett TS, Ladd J (2000) Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data. In: Proceedings of the ocean drilling program, part B: scientific reports, vol 164, pp 179–191. https://doi.org/10.2973/odp.proc.sr.164.219.2000

  • Demopoulos AWJ, McClain-Counts J, Bourque J et al (2019) Examination of Bathymodiolus childressi nutritional sources, isotopic niches, and food-web linkages at two seeps in the US Atlantic margin using stable isotope analysis and mixing models. Deep Sea Res Part I 148:53–66. https://doi.org/10.1016/j.dsr.2019.04.002

    Article  Google Scholar 

  • Dickens GR, Paull CK, Wallace P et al (1997) Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature 385:426–428. https://doi.org/10.1038/385426a0

    Article  Google Scholar 

  • Dillon W, Nealon J, Taylor M et al (2000) Seafloor collapse and methane venting associated with gas hydrate on the Blake Ridge—causes and implications to seafloor stability and methane release. In: Paull CK, Dillon WP (eds) Natural gas hydrates: occurrence, distribution and detection. American Geophysical Union, Washington DC, pp 211–233

    Google Scholar 

  • Dillon WP, Hutchinson DR, Drury RM et al (1996) Seismic reflection profiles on the Blake Ridge near sites 994, 995, and 997. Proc Ocean Drilling Program Part A Initial Rep 164:47–56

    Google Scholar 

  • Dillon WP, Lee MW, Fehlhaber K et al (1993) Gas hydrates on the Atlantic continental margin of the United States—controls on concentration. In: Howell DG (ed) The future of energy gases. US Geological Survey, Washington DC, pp 313–330. Professional Paper 1570

    Google Scholar 

  • Dillon WP, Popenoe P, Grow JA et al (1982) Growth faulting and salt diapirism: their relationship and control on the Carolina Trough, eastern North America. In: Watkins JS, Drake CL (eds) Studies of continental margin geology, pp 21–46

    Google Scholar 

  • Egeberg PK (2000) Hydrates associated with fluid flow above salt Diapirs (Site 996). Proc ODP Sci Results 164:219–228

    Google Scholar 

  • Ehlers J, Gibbard PL, Hughes PD (eds) (2011) Quaternary glaciations—extent and chronology: a closer look. Chapter 15, pp 1087–1108. https://doi.org/10.1016/B978-0-444-53447-7.00084-2

  • Embley RW (1982) Anatomy of some Atlantic margin sediment slides and some comments on ages and mechanisms. In: Saxov S, Nieuwenhuis JK (eds) Marine slides and other mass movements. Springer US, Boston, MA, pp 189–213. https://doi.org/10.1007/978-1-4613-3362-3_11

  • Embley RW, Jacobi RD (1977) Distribution and morphology of large submarine sediment slides and slumps on Atlantic continental margins. Mar Geotech 2(1–4):205–228. https://doi.org/10.1080/10641197709379780

    Article  Google Scholar 

  • Foucher J-P, Nouzé H, Henry P (2002) Observation and tentative interpretation of a double BSR on the Nankai slope. Mar Geol 187(1–2):161–175. https://doi.org/10.1016/S0025-3227(02)00264-5

    Article  Google Scholar 

  • Frye M, Schuenemeyer J, Shedd W et al (2011) Gas hydrate resource assessment on the United States outer continental shelf: a mass balance model. In: Proceedings of the 7th international conference on gas hydrates, Edinburgh, 17–21 July. https://www.boem.gov/sites/default/files/uploadedFiles/BOEM/Oil_and_Gas_Energy_Program/Resource_Evaluation/Gas_Hydrates/icgh2011.pdf

  • Frye M, Shedd W, Schuenemeyer J (2013) Gas hydrate resource assessment Atlantic outer continental shelf: spatial analysis of inputs and outputs; graphical and mathematical description of models and sub-models. Bureau of Ocean Energy Management. http://www.boem.gov/BOEM-Report-RED/

  • Gabitov R, Borrelli C, Buettner J et al (2019) Characterization of carbonate crust from a recently discovered methane seep on the North Atlantic continental margin of the USA. Minerals 9(3). https://doi.org/10.3390/min9030138

  • Grow JA, Mattick RE, Schlee JS (1979) Multichannel seismic depth sections and interval velocities over outer continental shelf and upper continental slope between Cape Hatteras and Cape Cod. In: Watkins JS, Montadert L, Dickerson PW (eds) Geological and geophysical investigations of continental margins. American Association of Petroleum Geologists, pp 65–83. https://pubs.er.usgs.gov/publication/70129669

  • Grow JA, Schlee JS, Dillon WP (1980) Multichannel seismic-reflection profiles collected along the US continental margin in 1978. US Geol Surv Open-File Rep 80–834:3

    Google Scholar 

  • Grozic JLH (2010) Interplay between gas hydrates and submarine slope failure. In: Mosher DC, Shipp RC, Moscardelli L et al (eds) Submarine mass movements and their consequences, pp 11–30. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-90-481-3071-9_2

  • Hathaway JC, Schlee JS, Poag CW et al (1976) Preliminary summary of the 1976 Atlantic margin coring project of the US Geological Survey, US Geological Survey open-file report 76-844, p 220. https://pubs.usgs.gov/of/1976/0844/report.pdf

  • Heyl TP, Gilhooly WP, Chambers R et al (2007) Characteristics of vesicomyid clams and their environment at the Blake Ridge cold seep, South Carolina, USA. Mar Ecol Prog Ser 339:169–184. https://www.int-res.com/abstracts/meps/v339/p169-184/

  • Hill JC, Brothers DS, Craig BK et al (2017) Geologic controls on submarine slope failure along the central US Atlantic margin: Insights from the Currituck slide complex. Mar Geol 385:114–130. https://doi.org/10.1016/j.margeo.2016.10.007

    Article  Google Scholar 

  • Hill JC, Brothers DS, Hornbach MJ et al (2019) Subsurface controls on the development of the Cape Fear slide complex, central US Atlantic margin. Geol Soc London Spec Pub 477(1):169. https://doi.org/10.1144/SP477.17

    Article  Google Scholar 

  • Hill JC, Driscoll NW, Weissel JK et al (2004) Large-scale elongated gas blowouts along the US Atlantic margin. J Geophys Res Solid Earth 109(B9). https://doi.org/10.1029/2004JB002969

  • Holbrook WS, Hoskins H, Wood WT et al (1996) Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science 273(5283):1840–1843. https://doi.org/10.1126/science.273.5283.1840

    Article  Google Scholar 

  • Holbrook WS, Lizarralde D, Pecher IA et al (2002) Escape of methane gas through sediment waves in a large methane hydrate province. Geology 30(5):467–470. https://doi.org/10.1130/0091-7613(2002)030%3c0467:EOMGTS%3e2.0.CO;2

    Article  Google Scholar 

  • Hornbach M (2010) Processed 3D volume of multichannel seismic data on the Blake Ridge, acquired during R/V Maurice Ewing expedition EW0008. IEDA. https://doi.org/10.1594/IEDA/500090

    Article  Google Scholar 

  • Hornbach MJ, Holbrook WS, Gorman AR et al (2003) Direct seismic detection of methane hydrate on the Blake Ridge. Geophysics 68(1):92–100. https://doi.org/10.1190/1.1543196

    Article  Google Scholar 

  • Hornbach MJ, Lavier LL, Ruppel CD (2007a) Triggering mechanism and tsunamogenic potential of the Cape Fear slide complex, US Atlantic margin. Geochem Geophys 8(12):Q12008, p 16. https://doi.org/10.1029/2007GC001722

  • Hornbach MJ, Ruppel C, Van Dover CL (2007b) Three-dimensional structure of fluid conduits sustaining an active deep marine cold seep. Geophys Res Lett 34(5). https://doi.org/10.1029/2006GL028859

  • Hornbach MJ, Ruppel C, Saffer DM et al (2005) Coupled geophysical constraints on heat flow and fluid flux at a salt diapir. Geophys Res Lett 32(24):L24617. https://doi.org/10.1029/2005GL024862

    Article  Google Scholar 

  • Hornbach MJ, Saffer DM, Holbrook WS et al (2008) Three-dimensional seismic imaging of the Blake Ridge methane hydrate province: evidence for large, concentrated zones of gas hydrate and morphologically driven advection. J Geophys Res Solid Earth 113(B7). https://doi.org/10.1029/2007JB005392

  • Hutchinson DR, Shelander D, Dai J et al (2008) Site selection for DOE/JIP gas hydrate drilling in the northern Gulf of Mexico. In: Proceedings of the 6th international conference on gas hydrates. 6–10 July 2008, Vancouver, Canada, Paper 5506, p 12. https://doi.org/10.14288/1.0041022

  • Katzman R, Holbrook WS, Paull CK (1994) Combined vertical-incidence and wide-angle seismic study of a gas hydrate zone, Blake Ridge. J Geophys Res Solid Earth 99(B9):17975–17995. https://doi.org/10.1029/94JB00662

    Article  Google Scholar 

  • Kayen RE, Lee HJ (1991) Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort sea margin. Mar Geotech 10(1–2):125–141. https://doi.org/10.1080/10641199109379886

    Article  Google Scholar 

  • Kluesner J, Ruppel CD, Brothers DS et al (2015) High-resolution seismic attribute analysis for the detectino of methane hydrate and substrate fluid migration pathways along the central US Atlantic margin. Paper OS31B-08 presented at the fall meeting. American Geophysical Union, San Francisco

    Google Scholar 

  • Kraemer LM, Owen RM, Dickens GR (2000) Lithology of the upper gas hydrate zone, Blake Outer Ridge: a link between diatoms, porosity, and gas hydrate. Proc Ocean Drill Prog Sci Res 164:229–236. https://doi.org/10.2973/odp.proc.sr.164.221.2000

    Article  Google Scholar 

  • Lee HJ (2009) Timing of occurrence of large submarine landslides on the Atlantic Ocean margin. Mar Geol 264(1):53–64. https://doi.org/10.1016/j.margeo.2008.09.009

  • Lee MW, Hutchinson DR, Agena WF et al (1994) Seismic character of gas hydrates on the Southeastern US continental margin. Mar Geophys Res 16(3):163–184. https://doi.org/10.1007/BF01237512

    Article  Google Scholar 

  • Locat J, Lee H, ten Brink US et al (2009) Geomorphology, stability and mobility of the Currituck slide. Mar Geol 264(1):28–40. https://doi.org/10.1016/j.margeo.2008.12.005

  • Lynner C, J A van Avendonk H, Bécel A et al (2019) The Eastern North American margin community seismic experiment: an amphibious active‐ and passive‐source dataset. Seismol Res Lett 91(1):533–540. https://doi.org/10.1785/0220190142

  • Majumdar U, Miller NC, Ruppel CD et al (2019) Refining gas hydrate distribution on the US Mid-Atlantic margin using modern seismic data fall meeting, 9–13 Dec 2019. American Geophysical Union, San Francisco, pp OS43A-03g

    Google Scholar 

  • Markl RG, Bryan GM, Ewing JI (1970) Structure of the Blake-Bahama outer ridge. J Geophys Res 75(24):4539–4555. https://doi.org/10.1029/JC075i024p04539

    Article  Google Scholar 

  • McVeigh D, Skarke A, Dekas AE et al (2018) Characterization of benthic biogeochemistry and ecology at three methane seep sites on the Northern US Atlantic margin. Deep Sea Res Part II Top Studies Oceanogr 150:41–56. https://doi.org/10.1016/j.dsr2.2018.03.001

    Article  Google Scholar 

  • Mienert J, Vanneste M, Bünz S et al (2005) Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga slide. Mar Pet Geol 22(1–2):233–244

    Article  Google Scholar 

  • Nimblett J, Ruppel C (2003) Permeability evolution during the formation of gas hydrates in marine sediment. J Geophys Res Solid Earth 108(B9). https://doi.org/10.1029/2001JB001650

  • Nixon MF, Grozic JLH (2007) Submarine slope failure due to gas hydrate dissociation: a preliminary quantification. Can Geotech J 44(3):314–325. https://doi.org/10.1139/t06-121

    Article  Google Scholar 

  • Paull CK, Dillon WP (1981) Appearance and distribution of the gas hydrate reflection in the BlakeRidge region, Offshore Southeastern United States. USGS Miscellaneous Field Study Map MF-1252. https://doi.org/10.3133/mf1252

  • Paull CK, Matsumoto R, Wallace PJ et al (1996) Proceedings of the ocean drilling program, initial reports. 164. Ocean Drilling Program, College Station, TX. https://doi.org/10.2973/odp.proc.ir.164.1996

  • Paull CK, Schmuck EA, Chanton J et al (1989) Carolina Trough diapirs: salt or shale. EOS Trans Am Geophys Union 70:370

    Google Scholar 

  • Pecher IA, Holbrook WS, Sen MK et al (2003) Seismic anisotropy in gas-hydrate- and gas-bearing sediment on the Blake Ridge, from a walkaway vertical seismic profile. Geophys Res Lett 30(14). https://doi.org/10.1029/2003GL017477

  • Phrampus BJ, Hornbach MJ (2012) Recent changes to the Gulf stream causing widespread gas hydrate destabilization. Nature 490(7421):527–530. https://doi.org/10.1038/nature11528

    Article  Google Scholar 

  • Popenoe P, Schmuck EA, Dillon WP (1993) The Cape Fear landslide: slope failure associated with salt diapirism and gas hydrate decomposition. Submarine landslides: selective studies in the us exclusive economic zone. US Geol Surv Bull 2002:40–53. https://doi.org/10.3133/b2002

    Article  Google Scholar 

  • Posewang J, Mienert J (1999) The enigma of double BSRs: indicators for changes in the hydrate stability field? Geo-Mar Lett 19(1):157–163. https://doi.org/10.1007/s003670050103

    Article  Google Scholar 

  • Prior DB, Doyle EH, Neurauter T (1986) The Currituck slide, mid-Atlantic continental slope—revisited. Mar Geol 73(1):25–45. https://doi.org/10.1016/0025-3227(86)90109-X

    Article  Google Scholar 

  • Prouty NG, Sahy D, Ruppel CD et al (2016) Insights into methane dynamics from analysis of authigenic carbonates and chemosynthetic mussels at newly-discovered Atlantic Margin seeps. Earth Planet Sci Lett 449:332–344. https://doi.org/10.1016/j.epsl.2016.05.023

    Article  Google Scholar 

  • Quattrini AM, Nizinski MS, Chaytor JD et al (2015) Exploration of the canyon-incised continental margin of the Northeastern United States reveals dynamic habitats and diverse communities. PLOS ONE 10(10):e0139904. https://doi.org/10.1371/journal.pone.0139904

  • Rowe MM, Gettrust JF (1993) Fine structure of methane hydrate-bearing sediment on the Black Outer Ridge as determined from deep-tow multichannel seismic data. J Geophys Res 98(B1):463

    Article  Google Scholar 

  • Ruppel C, Demopoulos A, Prouty N (2018a) Exploring US mid-Atlantic margin methane seeps: IMMeRSS, May 2017. https://tos.org/oceanography/assets/docs/31-1_supplement.pdf

  • Ruppel C, Miller NC, Frye M et al (2018b) US Mid-Atlantic resource imaging experiment (MATRIX) constrains gas hydrate distribution. DOE-NETL Fire in the Ice Newsl 19(1):6–8

    Google Scholar 

  • Ruppel C, Kessler JD (2017) The interaction of climate change and methane hydrates. Rev Geophys 55:  126-168.https://doi.org/10.1002/2016RG000534

  • Ruppel C, Kluesner J, Danforth B et al (2015) Subseafloor to sea-air interface characterization of methane dynamics in the northern US Atlantic margin seep province. Paper OS33A-1991, presented at the Fall Meeting. American Geophysical Union, San Francisco

    Google Scholar 

  • Ruppel C, von Herzen RP, Bonneville A (1995) Heat flux through an old (∼175 Ma) passive margin: Offshore southeastern United States. J Geophys Res Solid Earth 100(B10):20037–20057. https://doi.org/10.1029/95JB01860

    Article  Google Scholar 

  • Ruppel CD, Waite WF (2020) Timescales and processes of methane hydrate formation and breakdown, with application to geologic systems. J Geophys Res Solid Earth 125:e2018JB016459. https://doi.org/10.1029/2018JB016459

  • Schmuck EA, Paull CK (1993) Evidence for gas accumulation associated with diapirism and gas hydrates at the head of the Cape Fear Slide. Geo-Mar Lett 13(3):145–152. https://doi.org/10.1007/BF01593187

    Article  Google Scholar 

  • Scholle PA (1980) Geological studies of the COST No. B-3 well, United States mid-Atlantic continental slope area. PA Scholle Circular, US Geological Survey, p 138. https://pubs.usgs.gov/circ/1980/0833/report.pdf

  • Shedd WW, Hutchinson DR (2006) Gas hydrate potential of the mid Atlantic outer continental shelf. DOE-NETL Fire in the Ice Newsl 6(3):8–9

    Google Scholar 

  • Siegel J, Dugan B, Lizarralde D et al (2012) Geophysical evidence of a late Pleistocene glaciation and paleo-ice stream on the Atlantic Continental Shelf offshore Massachusetts, USA. Mar Geol 303–306:63–74. https://doi.org/10.1016/j.margeo.2012.01.007

    Article  Google Scholar 

  • Skarke A, Ruppel C, Hoy S (2019) The 100th NOAA ship okeanos explorer mission visits new methane plumes where the US Atlantic seeps story began. https://oceanexplorer.noaa.gov/okeanos/explorations/ex1903/logs/july12/july12.html. Accessed 8 Aug 2020

  • Skarke A, Ruppel C, Kodis M et al (2014) Widespread methane leakage from the sea floor on the northern US Atlantic margin (Letter). Nat Geosci 7(9):657–661. https://doi.org/10.1038/ngeo2232

    Article  Google Scholar 

  • Skarke AD, Ruppel CD, Kidiwela MW et al (2018) Expanded US Atlantic margin seep inventory yields insight into methane dynamics. Paper OS33C-1913 presented at the fall meeting. American Geophysical Union, Washington DC

    Google Scholar 

  • Stoll RD, Ewing J, Bryan GM (1971) Anomalous wave velocities in sediment containing gas hydrates. J Geophys Res 76(8):2090–2094

    Article  Google Scholar 

  • Tari G, Novotny B, Jabour H et al (2017) Chapter 15—salt tectonics along the Atlantic margin of NW Africa (Morocco and Mauritania). In: Soto JI, Flinch JF, Tari G (eds) Permo-Triassic salt provinces of Europe, North Africa and the Atlantic margins. Elsevier, pp 331–351. https://doi.org/10.1016/B978-0-12-809417-4.00016-1

  • Taylor MH, Dillon WP, Anton CH et al (1999) Seismic-reflection surveys of the Blake Ridge, R/V Cape Hatteras 1992 and 1995: Data acquisition, navigation and processing. US Geological Survey open file report 99-372. https://pubs.usgs.gov/of/1999/of99-372/

  • Taylor MH, Dillon WP, Pecher IA (2000) Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir: new insights from seismic data. Mar Geol 164(1):79–89. https://doi.org/10.1016/S0025-3227(99)00128-0

    Article  Google Scholar 

  • ten Brink US, Chaytor JD, Geist EL et al (2015) Tsunami hazard assessment for the US Atlantic and gulf coasts final report to the US Nuclear Regulatory Commission. US Geological Survey administrative report, p 374

    Google Scholar 

  • Triezenberg PJ, Hart PE, Childs JR (2016) National archive of marine seismic surveys. https://walrus.wr.usgs.gov/NAMSS/

  • Tucholke BE, Bryan GM, Ewing JI (1977) Gas-hydrate horizons detected in seismic-profiler data from the western north Atlantic1. AAPG Bull 61(5):698–707. https://doi.org/10.1306/C1EA3DC5-16C9-11D7-8645000102C1865D

    Article  Google Scholar 

  • Turner PJ, Ball B, Diana Z et al (2020) Methane seeps on the US Atlantic margin and their potential importance to populations of the commercially valuable deep-sea red crab, Chaceon Quinquedens. Front Mar Sci 7:75. https://doi.org/10.3389/fmars.2020.00075

    Article  Google Scholar 

  • Van Dover CL, Aharon P, Bernhard JM et al (2003) Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem. Deep Sea Res Part I Oceanogr Res Pap 50(2):281–300. https://doi.org/10.1016/S0967-0637(02)00162-0

  • Vanneste M, De Batist M, Golmshtok A et al (2001) Multi-frequency seismic study of gas hydrate-bearing sediment in Lake Baikal, Siberia. Mar Geol 172(1):1–21. https://doi.org/10.1016/S0025-3227(00)00117-1

    Article  Google Scholar 

  • Wagner JKS, McEntee MH, Brothers LL et al (2013) Cold-seep habitat mapping: high-resolution spatial characterization of the Blake Ridge Diapir seep field. Deep Sea Res Part II Top Stud Oceanogr 92:183–188. https://doi.org/10.1016/j.dsr2.2013.02.008

    Article  Google Scholar 

  • Waite WF, Ruppel CD, Boze LG et al (2020) Preliminary global database of known and inferred gas hydrate locations. US Geological Survey Data Release. https://doi.org/10.5066/P9llFVJM

    Article  Google Scholar 

  • Wood WT, Gettrust JF, Chapman NR et al (2002) Decreased stability of methane hydrates in marine sediment owing to phase-boundary roughness. Nature 420(6916):656–660. https://doi.org/10.1038/nature01263

    Article  Google Scholar 

  • Xu W, Ruppel C (1999) Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediment. J Geophys Res Solid Earth 104(B3):5081–5095. https://doi.org/10.1029/1998JB900092

    Article  Google Scholar 

Download references

Acknowledgements

Carolyn Ruppel was supported by the USGS Gas Hydrates Project and a DOE-USGS Interagency Agreement 89243320SFE000013. William Danforth (USGS) prepared the original version of Fig. 24.7, and John Miller (USGS) reprocessed the seismic data shown in Fig. 24.8 for the Extended Continental Shelf project. A review by Patrick Hart improved the manuscript. We are grateful to generations of US Department of Interior scientists who have studied gas hydrates on the USAM and documented their findings and data so clearly. Airgun data shown in this article are available from Arsenault et al. (2017), Hornbach (2010), Triezenberg et al. (2016) and from the Marine Geoscience Data System (marine-geo.org) for ENAM seismic reflection lines. Any use of trade, firm or product name is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn D. Ruppel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruppel, C.D., Shedd, W., Miller, N.C., Kluesner, J., Frye, M., Hutchinson, D. (2022). US Atlantic Margin Gas Hydrates. In: Mienert, J., Berndt, C., Tréhu, A.M., Camerlenghi, A., Liu, CS. (eds) World Atlas of Submarine Gas Hydrates in Continental Margins. Springer, Cham. https://doi.org/10.1007/978-3-030-81186-0_24

Download citation

Publish with us

Policies and ethics