Abstract
Svyatogor Ridge is a gas hydrate-bearing sediment drift on the flank of an ultra-slow spreading mid-ocean ridge. Svyatogor Ridge hosts shallow gas accumulations, a strong bottom simulating reflection and fluid flow pathways (predominantly chimneys and faults) to the seafloor, culminating in pockmarks. Large offset detachment faults underlying Svyatogor Ridge provide access to deeper crustal and mantle ultramafic rocks, likely acting as conduits for warm fluid (and possible abiotic methane produced via serpentinization) to reach the shallow subsurface. This environment is distinct compared to other Arctic gas hydrate systems as it rests on the flank of an active mid-oceanic spreading ridge. It is the only known gas hydrate-bearing sediment drift in the Arctic where crustal-scale processes (mid-ocean ridge spreading) directly control the pressure and temperature regime for gas hydrate formation as well as fluid flow dynamics at the site.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Amundsen IMH, Blinova M, Hjelstuen BO et al (2011) The Cenozoic western Svalbard margin: sediment geometry and sedimentary processes in an area of ultraslow oceanic spreading. Mar Geophys Res 32(4):441–453
Beszczynska-Möller A, Fahrbach E, Schauer U et al (2012) Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean 1997–2010. ICES J Mar Sci J du Conseil fss056
Burwicz EB, Rüpke L, Wallmann K (2011) Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation. Geochim Cosmochim Acta 75(16):4562–4576
Crane K, Sundvor E, Buck R et al (1991) Rifting in the northern Norwegian‐Greenland Sea: thermal tests of asymmetric spreading. J Geophys Res Solid Earth 96(B9):14529–14550
Crane K, Sundvor E, Foucher J-P et al (1988) Thermal evolution of the western Svalbard margin. Mar Geophys Res 9(2):165–194
Ehlers B-M, Jokat W (2009) Subsidence and crustal roughness of ultra-slow spreading ridges in the northern North Atlantic and the Arctic Ocean. Geophys J Int 177(2):451–462
Eiken O, Hinz K (1993) Contourites in the Fram Strait. Sediment Geol 82(1):15–32
Engen Ø, Faleide JI, Dyreng TK (2008) Opening of the Fram Strait gateway: a review of plate tectonic constraints. Tectonophysics 450(1–4):51–69
Etiope G, Sherwood Lollar B (2013) Abiotic methane on Earth. Rev Geophys 51(2):276–299
Etiope G, Tsikouras B, Kordella S (2013) Methane flux and origin in the Othrys ophiolite hyperalkaline springs, Greece. Chem Geol 347:161–174
Etiope G, Whiticar M (2019) Abiotic methane in continental ultramafic rock systems: towards a genetic model. Applied Geochem 102:139–152
Fischer F, Tropsch H (1926) The synthesis of petroleum at atmospheric pressures from gasification products of coal. Brennstoff-Chemie 7:97–104
Früh-Green GL, Connolly JA, Plas A et al (2004) Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity. In: Wilcock WSD, DeLong EF, Kelley DS et al (eds) The subseafloor biosphere at Mid-Ocean Ridges. American Geophysical Union, Washington DC, pp 119–136
Früh-Green GL, Orcutt BN, Rouméjon S et al (2018) Magmatism, serpentinization and life: insights through drilling the Atlantis Massif (IODP Expedition 357). Lithos 323:137–155
Howe JA, Shimmield TM, Harland R et al (2008) Late Quaternary contourites and glaciomarine sedimentation in the Fram Strait. Sedimentology 55(1):179–200
Johnson JE, Mienert J, Plaza-Faverola A et al (2015) Abiotic methane from ultraslow-spreading ridges can charge Arctic gas hydrates. Geology 43(5):371–374
Kelley DS, Karson JA, Früh-Green GL et al (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307(5714):1428–1434
Klein F, Grozeva NG, Seewald JS (2019) Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proc Nat Acad Sci 116(36):17666–17672
Konn C, Charlou J-L, Holm NG et al (2015) The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge. Astrobiology 15(5):381–399
Malinverno A, Goldberg DS (2015) Testing short-range migration of microbial methane as a hydrate formation mechanism: results from Andaman Sea and Kumano Basin drill sites and global implications. Earth Planet Sci Lett 422:105–114
Mattingsdal R, Knies J, Andreassen K et al (2014) A new 6 Myr stratigraphic framework for the Atlantic-Arctic Gateway. Quat Sci Rev 92:170–178
Okino K, Curewitz D, Asada M et al (2002) Preliminary analysis of Knipovich Ridge segmentation: influence of focused magmatism and ridge obliquity on an ultraslow spreading system. Earth Planet Sci Lett 202(2):275–288
Plaza-Faverola A, Bünz S, Johnson JE et al (2015) Role of tectonic stress in seepage evolution along the gas hydrate-charged Vestnesa Ridge. Fram Strait. Geophys Res Lett 42(3):733–742
Proskurowski G, Lilley MD, Seewald JS (2008) Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319(5863):604–607
Rajan A, Mienert J, Bünz S, Chand S (2012) Potential serpentinization, degassing, and gas hydrate formation at a young (< 20 Ma) sedimented ocean crust of the Arctic Ocean ridge system. J Geophys Res Solid Earth 117(B3). https://doi.org/10.1029/2011JB008537
Rebesco M, Laberg JS, Pedrosa MT et al (2014) Onset and growth of Trough-Mouth Fans on the North-Western Barents Sea margin—implications for the evolution of the Barents Sea/Svalbard Ice Sheet. Quat Sci Rev 92:227–234
Sabatier P, Senderens J (1902) New methane synthesis. Compte Rendu Acad Sci Paris 134:514–516
Sherwood Lollar B, Frape SK, Weise SM et al (1993) Abiogenic methanogenesis in crystalline rocks. Geochim Cosmochim Acta 57(23):5087–5097
Tucholke BE, Lin J, Kleinrock MC (1998) Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J Geophys Res Solid Earth 103(B5):9857–9866
Waghorn KA, Bünz S, Plaza-Faverola A et al (2018) 3-D seismic investigation of a gas hydrate and fluid flow system on an active Mid-Ocean Ridge; Svyatogor Ridge. Fram Strait Geochem Geophys 19(8):2325–2341
Waghorn KA, Vadakkepuliyambatta S, Plaza-Faverola A et al (2020) Crustal processes sustain Arctic abiotic gas hydrate and fluid flow systems. Sci Rep 10
Acknowledgements
This research is supported by the Research Council of Norway through its Centres of Excellence (CoE) funding scheme, project number 223259. We acknowledge the crew and scientists aboard the R.V. Helmer Hanssen 2014–2018 in supporting the acquisition of data over Svyatogor Ridge.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Waghorn, K.A., Johnson, J.E., Bünz, S., Plaza-Faverola, A., Vadakkepuliyambatta, S., Waage, M. (2022). Svyatogor Ridge—A Gas Hydrate System Driven by Crustal Scale Processes. In: Mienert, J., Berndt, C., Tréhu, A.M., Camerlenghi, A., Liu, CS. (eds) World Atlas of Submarine Gas Hydrates in Continental Margins. Springer, Cham. https://doi.org/10.1007/978-3-030-81186-0_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-81186-0_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81185-3
Online ISBN: 978-3-030-81186-0
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)
