Skip to main content

Svyatogor Ridge—A Gas Hydrate System Driven by Crustal Scale Processes

  • 1694 Accesses

Abstract

Svyatogor Ridge is a gas hydrate-bearing sediment drift on the flank of an ultra-slow spreading mid-ocean ridge. Svyatogor Ridge hosts shallow gas accumulations, a strong bottom simulating reflection and fluid flow pathways (predominantly chimneys and faults) to the seafloor, culminating in pockmarks. Large offset detachment faults underlying Svyatogor Ridge provide access to deeper crustal and mantle ultramafic rocks, likely acting as conduits for warm fluid (and possible abiotic methane produced via serpentinization) to reach the shallow subsurface. This environment is distinct compared to other Arctic gas hydrate systems as it rests on the flank of an active mid-oceanic spreading ridge. It is the only known gas hydrate-bearing sediment drift in the Arctic where crustal-scale processes (mid-ocean ridge spreading) directly control the pressure and temperature regime for gas hydrate formation as well as fluid flow dynamics at the site.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amundsen IMH, Blinova M, Hjelstuen BO et al (2011) The Cenozoic western Svalbard margin: sediment geometry and sedimentary processes in an area of ultraslow oceanic spreading. Mar Geophys Res 32(4):441–453

    Article  Google Scholar 

  • Beszczynska-Möller A, Fahrbach E, Schauer U et al (2012) Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean 1997–2010. ICES J Mar Sci J du Conseil fss056

    Google Scholar 

  • Burwicz EB, Rüpke L, Wallmann K (2011) Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation. Geochim Cosmochim Acta 75(16):4562–4576

    Article  Google Scholar 

  • Crane K, Sundvor E, Buck R et al (1991) Rifting in the northern Norwegian‐Greenland Sea: thermal tests of asymmetric spreading. J Geophys Res Solid Earth 96(B9):14529–14550

    Google Scholar 

  • Crane K, Sundvor E, Foucher J-P et al (1988) Thermal evolution of the western Svalbard margin. Mar Geophys Res 9(2):165–194

    Article  Google Scholar 

  • Ehlers B-M, Jokat W (2009) Subsidence and crustal roughness of ultra-slow spreading ridges in the northern North Atlantic and the Arctic Ocean. Geophys J Int 177(2):451–462

    Article  Google Scholar 

  • Eiken O, Hinz K (1993) Contourites in the Fram Strait. Sediment Geol 82(1):15–32

    Article  Google Scholar 

  • Engen Ø, Faleide JI, Dyreng TK (2008) Opening of the Fram Strait gateway: a review of plate tectonic constraints. Tectonophysics 450(1–4):51–69

    Article  Google Scholar 

  • Etiope G, Sherwood Lollar B (2013) Abiotic methane on Earth. Rev Geophys 51(2):276–299

    Article  Google Scholar 

  • Etiope G, Tsikouras B, Kordella S (2013) Methane flux and origin in the Othrys ophiolite hyperalkaline springs, Greece. Chem Geol 347:161–174

    Article  Google Scholar 

  • Etiope G, Whiticar M (2019) Abiotic methane in continental ultramafic rock systems: towards a genetic model. Applied Geochem 102:139–152

    Article  Google Scholar 

  • Fischer F, Tropsch H (1926) The synthesis of petroleum at atmospheric pressures from gasification products of coal. Brennstoff-Chemie 7:97–104

    Google Scholar 

  • Früh-Green GL, Connolly JA, Plas A et al (2004) Serpentinization of oceanic peridotites: implications for geochemical cycles and biological activity. In: Wilcock WSD, DeLong EF, Kelley DS et al (eds) The subseafloor biosphere at Mid-Ocean Ridges. American Geophysical Union, Washington DC, pp 119–136

    Chapter  Google Scholar 

  • Früh-Green GL, Orcutt BN, Rouméjon S et al (2018) Magmatism, serpentinization and life: insights through drilling the Atlantis Massif (IODP Expedition 357). Lithos 323:137–155

    Article  Google Scholar 

  • Howe JA, Shimmield TM, Harland R et al (2008) Late Quaternary contourites and glaciomarine sedimentation in the Fram Strait. Sedimentology 55(1):179–200

    Google Scholar 

  • Johnson JE, Mienert J, Plaza-Faverola A et al (2015) Abiotic methane from ultraslow-spreading ridges can charge Arctic gas hydrates. Geology 43(5):371–374

    Article  Google Scholar 

  • Kelley DS, Karson JA, Früh-Green GL et al (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307(5714):1428–1434

    Article  Google Scholar 

  • Klein F, Grozeva NG, Seewald JS (2019) Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proc Nat Acad Sci 116(36):17666–17672

    Article  Google Scholar 

  • Konn C, Charlou J-L, Holm NG et al (2015) The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge. Astrobiology 15(5):381–399

    Article  Google Scholar 

  • Malinverno A, Goldberg DS (2015) Testing short-range migration of microbial methane as a hydrate formation mechanism: results from Andaman Sea and Kumano Basin drill sites and global implications. Earth Planet Sci Lett 422:105–114

    Article  Google Scholar 

  • Mattingsdal R, Knies J, Andreassen K et al (2014) A new 6 Myr stratigraphic framework for the Atlantic-Arctic Gateway. Quat Sci Rev 92:170–178

    Article  Google Scholar 

  • Okino K, Curewitz D, Asada M et al (2002) Preliminary analysis of Knipovich Ridge segmentation: influence of focused magmatism and ridge obliquity on an ultraslow spreading system. Earth Planet Sci Lett 202(2):275–288

    Article  Google Scholar 

  • Plaza-Faverola A, Bünz S, Johnson JE et al (2015) Role of tectonic stress in seepage evolution along the gas hydrate-charged Vestnesa Ridge. Fram Strait. Geophys Res Lett 42(3):733–742

    Article  Google Scholar 

  • Proskurowski G, Lilley MD, Seewald JS (2008) Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319(5863):604–607

    Article  Google Scholar 

  • Rajan A, Mienert J, Bünz S, Chand S (2012) Potential serpentinization, degassing, and gas hydrate formation at a young (< 20 Ma) sedimented ocean crust of the Arctic Ocean ridge system. J Geophys Res Solid Earth 117(B3). https://doi.org/10.1029/2011JB008537

  • Rebesco M, Laberg JS, Pedrosa MT et al (2014) Onset and growth of Trough-Mouth Fans on the North-Western Barents Sea margin—implications for the evolution of the Barents Sea/Svalbard Ice Sheet. Quat Sci Rev 92:227–234

    Article  Google Scholar 

  • Sabatier P, Senderens J (1902) New methane synthesis. Compte Rendu Acad Sci Paris 134:514–516

    Google Scholar 

  • Sherwood Lollar B, Frape SK, Weise SM et al (1993) Abiogenic methanogenesis in crystalline rocks. Geochim Cosmochim Acta 57(23):5087–5097

    Article  Google Scholar 

  • Tucholke BE, Lin J, Kleinrock MC (1998) Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J Geophys Res Solid Earth 103(B5):9857–9866

    Article  Google Scholar 

  • Waghorn KA, Bünz S, Plaza-Faverola A et al (2018) 3-D seismic investigation of a gas hydrate and fluid flow system on an active Mid-Ocean Ridge; Svyatogor Ridge. Fram Strait Geochem Geophys 19(8):2325–2341

    Article  Google Scholar 

  • Waghorn KA, Vadakkepuliyambatta S, Plaza-Faverola A et al (2020) Crustal processes sustain Arctic abiotic gas hydrate and fluid flow systems. Sci Rep 10

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Research Council of Norway through its Centres of Excellence (CoE) funding scheme, project number 223259. We acknowledge the crew and scientists aboard the R.V. Helmer Hanssen 2014–2018 in supporting the acquisition of data over Svyatogor Ridge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Alyse Waghorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waghorn, K.A., Johnson, J.E., Bünz, S., Plaza-Faverola, A., Vadakkepuliyambatta, S., Waage, M. (2022). Svyatogor Ridge—A Gas Hydrate System Driven by Crustal Scale Processes. In: Mienert, J., Berndt, C., Tréhu, A.M., Camerlenghi, A., Liu, CS. (eds) World Atlas of Submarine Gas Hydrates in Continental Margins. Springer, Cham. https://doi.org/10.1007/978-3-030-81186-0_20

Download citation

Publish with us

Policies and ethics