Skip to main content

Global Analysis and Experimental Dynamics of the 2:1 Internal Resonance in the Higher-Order Modes of a MEMS Microbeam

  • Conference paper
  • First Online:
Advances in Nonlinear Dynamics

Abstract

In this work, we consider a MEMS microbeam, and we investigate the experimental response of the device at the third-mode dynamics. By forward and backward sweeping, the data acquired via the laser Doppler vibrometer show the occurrence of a 2:1 internal resonance, where the coupling mode is the fifth. The experimental response is simulated via shooting technique and attractor basins. We focus on the metamorphoses of the basins of attraction scenario induced in the phase space by the activation of the internal resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Ruzziconi, S. Lenci, M.I. Younis, Interpreting and predicting experimental responses of micro-and nano-devices via dynamical integrity, in Global Nonlinear Dynamics for Engineering Design and System Safety, ed. by S. Lenci, G. Rega, (Springer, 2019), pp. 113–166

    Chapter  Google Scholar 

  2. L. Ruzziconi, M.I. Younis, S. Lenci, An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response. Meccanica 48, 1761–1775 (2013)

    Article  MathSciNet  Google Scholar 

  3. N. Kacem, S. Baguet, L. Duraffourg, G. Jourdan, R. Dufour, S. Hentz, Overcoming limitations of nanomechanical resonators with simultaneous resonances. Appl. Phys. Lett. 107(7), 073105 (2015)

    Article  Google Scholar 

  4. N. Alcheikh, A.Z. Hajjaj, M.I. Younis, Highly sensitive and wide-range resonant pressure sensor based on the veering phenomenon. Sens. Actuators A Phys. 300, 111652 (2019)

    Article  Google Scholar 

  5. V. Settimi, G. Rega, Exploiting global dynamics of a noncontact atomic force microcantilever to enhance its dynamical robustness via numerical control. Int. J. Bifurcat. Chaos 26(7), 1630018 (2016)

    Article  MathSciNet  Google Scholar 

  6. L. Medina, R. Gilat, S. Krylov, Dynamic release condition in latched curved micro beams. Commun. Nonlinear Sci. Numer. Simul. 73, 291–306 (2019)

    Article  MathSciNet  Google Scholar 

  7. N. Jaber, S. Ilyas, O. Shekhah, M. Eddaoudi, M.I. Younis, Resonant gas sensor and switch operating in air with metal-organic frameworks coating. J. Microelectromech. Syst. 27(2), 156–163 (2018)

    Article  Google Scholar 

  8. D.G. Bassinello, A.M. Tusset, R.T. Rocha, J.M. Balthazar, Dynamical analysis and control of a chaotic microelectromechanical resonator model. J. Shock Vib. 2018, 4641629 (2018)

    Google Scholar 

  9. V. Kumar, J.W. Boley, Y. Yang, H. Ekowaluyo, J.K. Miller, G.T.C. Chiu, J.F. Rhoads, Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers. Appl. Phys. Lett. 98(15), 153510 (2011)

    Article  Google Scholar 

  10. A.M. Alneamy, M.E. Khater, A.K. Abdel-Aziz, G.R. Heppler, E.M. Abdel-Rahman, Electrostatic arch micro-tweezers. Int. J. Non Linear Mech. 118, 103298 (2020)

    Article  Google Scholar 

  11. S. Lenci, G. Rega, Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. J. Micromech. Microeng. 16(2), 390 (2006)

    Article  Google Scholar 

  12. M.A.A. Hafiz, L. Kosuru, M.I. Younis, Electrothermal frequency modulated resonator for mechanical memory. J. Microelectromech. Syst. 25(5), 877–883 (2016)

    Article  Google Scholar 

  13. A.Z. Hajjaj, N. Jaber, S. Ilyas, F.K. Alfosail, M.I. Younis, Linear and nonlinear dynamics of micro and nano-resonators: Review of recent advances. Int. J. Non Linear Mech. 119, 103328 (2020)

    Article  Google Scholar 

  14. K. Asadi, J. Yu, H. Cho, Nonlinear couplings and energy transfers in micro-and nano-mechanical resonators: Intermodal coupling, internal resonance and synchronization. Philos. Trans. A Math. Phys. Eng. Sci. 376(2127), 20170141 (2018)

    Google Scholar 

  15. W. Yang, S. Towfighian, Internal resonance and low frequency vibration energy harvesting. Smart Mater. Struct. 26(9), 095008 (2017)

    Article  Google Scholar 

  16. A. Vyas, D. Peroulis, A.K. Bajaj, Dynamics of a nonlinear microresonator based on resonantly interacting flexural-torsional modes. Nonlinear Dyn. 54(1–2), 31–52 (2008)

    Article  Google Scholar 

  17. R. Potekin, S. Dharmasena, H. Keum, X. Jiang, J. Lee, S. Kim, L.A. Bergman, A.F. Vakakis, H. Cho, Multi-frequency atomic force microscopy based on enhanced internal resonance of an inner-paddled cantilever. Sens. Actuators A Phys. 273, 206–220 (2018)

    Article  Google Scholar 

  18. S.S.P. Nathamgari, S. Dong, L. Medina, N. Moldovan, D. Rosenmann, R. Divan, D. Lopez, L.J. Lauhon, H.D. Espinosa, Nonlinear mode coupling and one to one internal resonances in a monolayer WS2 nanoresonator. Nano Lett. 19(6), 4052–4059 (2019)

    Article  Google Scholar 

  19. E. Hacker, O. Gottlieb, Application of reconstitution multiple scale asymptotics for a two-to-one internal resonance in magnetic resonance force microscopy. Int. J. Non Linear Mech. 94, 174–199 (2017)

    Article  Google Scholar 

  20. C.R. Kirkendall, D.J. Howard, J.W. Kwon, Internal resonance in quartz crystal resonator and mass detection in nonlinear regime. Appl. Phys. Lett. 103(22), 223502 (2013)

    Article  Google Scholar 

  21. M.F. Daqaq, E.M. Abdel-Rahman, A.H. Nayfeh, Two-to-one internal resonance in microscanners. Nonlinear Dyn. 57, 231 (2009)

    Article  Google Scholar 

  22. H. Ouakad, H.M. Sedighi, M.I. Younis, One-to-one and three-to-one internal resonances in MEMS shallow arches. J. Comput. Nonlinear Dyn. 12(5), 051025 (2017)

    Article  Google Scholar 

  23. A. Sarrafan, S. Azimi, F. Golnaraghi, B. Bahreyni, A nonlinear rate microsensor utilising internal resonance. Sci. Rep. 9(1), 8648 (2019)

    Article  Google Scholar 

  24. A.Z. Hajjaj, N. Jaber, M.A.A. Hafiz, S. Ilyas, M.I. Younis, Multiple internal resonances in MEMS arch resonators. Phys. Lett. A 382(47), 3393–3398 (2018)

    Article  Google Scholar 

  25. L. Ruzziconi, N. Jaber, L. Kosuru, M.L. Bellaredj, M.I. Younis, Two-to-one internal resonance in the higher-order modes of a MEMS beam: Experimental investigation and theoretical analysis via local stability theory. Int. J. Non Linear Mech. 129, 103664 (2021)

    Article  Google Scholar 

  26. A. Nayfeh, D. Mook, Nonlinear Oscillations (Wiley, New York, 1979)

    MATH  Google Scholar 

  27. L. Ruzziconi, N. Jaber, L. Kosuru, M.L. Bellaredj, M.I. Younis, Experimental and theoretical investigation of the 2: 1 internal resonance in the higher-order modes of a MEMS microbeam at elevated excitations. J. Sound Vib. 499, 115983 (2021)

    Article  Google Scholar 

  28. L. Ruzziconi, N. Jaber, L. Kosuru, M.L. Bellaredj, M.I. Younis, Internal resonance in the higher-order modes of a MEMS beam: Experiments and global analysis. Nonlinear Dyn. 103, 2197–2226 (2021)

    Article  Google Scholar 

  29. M.I. Younis, MEMS Linear and Nonlinear Statics and Dynamics (Springer, 2011)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Ruzziconi .

Editor information

Editors and Affiliations

Appendix: Mechanical Model

Appendix: Mechanical Model

We model the device as a parallel plate capacitor. The upper electrode is represented by a clamped-clamped microbeam with a rectangular cross section and straight configuration. To model the residual stresses, we assume a constant axial load P. To represent the half-electrode configuration, only half of the microbeam length is supposed to provide the electric contribution. The governing equation of motion is [29]

$$ \ddot{v}+\xi \dot{v}+{v^{{\prime\prime\prime}}}^{\prime }+\alpha {v}^{{\prime\prime} }=-{\gamma F}_{\mathrm{e}} $$
(A.1)

with

$$ \alpha =n- ka{\int}_0^1\frac{1}{2}{\left({v}^{\hbox{'}}\right)}^2 dz\kern1em {F}_{\mathrm{e}}=\frac{{\left({V}_{\mathrm{DC}}+{V}_{\mathrm{AC}}\cos \left(\Omega t\right)\right)}^2}{{\left(1-v\right)}^2}\left[H\left({z}_1\right)-H\left({z}_2\right)\right] $$
(A.2)

with H(z 1) and H(z 2) unit step functions, which are used to define the length and the position of the lower electrode. The considered nondimensional parameters are

$$ {\displaystyle \begin{array}{ccc} ka=(EA){d}^2/(EJ)& n=(EA){Lw}_{\mathrm{B}}/(EJ)& \xi ={cL}^4/\left( EJ T\right)\\ {}\gamma =\frac{1}{2}{\varepsilon}_0{\varepsilon}_{\mathrm{r}}{A}_{\mathrm{c}}{L}^3/\left({d}^3 EJ\right)& T=\sqrt{\left(\rho\ {AL}^4\right)/(EJ)}& \tilde{\Omega}=\Omega T\end{array}} $$
(A.3)

where L is length, A and J are respectively area and moment of inertia, ρ is the material density, E is the effective Young’s modulus, c is damping coefficient, d is the capacitor gap, ε 0 is dielectric constant in the free space, ε r is the relative permittivity of the gap space medium (air) with respect to the free space, and A c is the area overlapping between the electrodes.

The dynamics of the microbeam are approximated as \( v\left(z,t\right)\cong {\sum}_{i=1}^n{\phi}_i(z){u}_i(t) \), where ϕ i(z) are the mode shapes under consideration (third and fifth). We derive the reduced-order model by applying the Galerkin procedure, which yields the 2 d.o.f. system [25]

$$ {\displaystyle \begin{array}{c}{\ddot{u}}_n+c{\dot{u}}_n+{\omega}_n^2{u}_n- ka\left({a}_{n1}{u}_1^3+{a}_{n2}{u}_2^3+{a}_{n3}{u}_1{u}_2^2+{a}_{n4}{u}_2{u}_1^2\right)\\ {}=-{\gamma V}^2{\int}_0^{0.5}\frac{\phi_n}{{\left(1-{\phi}_1{u}_1-{\phi}_2{u}_2\right)}^2} dz\kern2em \mathrm{for}\kern0.5em n=1,2\end{array}} $$
(A.4)

where numerical integration is applied to evaluate the electric force term. Table A.1 reports the coefficients used in the model.

Table 1 Coefficients of the model in Eq. (A.4)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruzziconi, L., Jaber, N., Kosuru, L., Bellaredj, M.L., Younis, M.I. (2022). Global Analysis and Experimental Dynamics of the 2:1 Internal Resonance in the Higher-Order Modes of a MEMS Microbeam. In: Lacarbonara, W., Balachandran, B., Leamy, M.J., Ma, J., Tenreiro Machado, J.A., Stepan, G. (eds) Advances in Nonlinear Dynamics. NODYCON Conference Proceedings Series. Springer, Cham. https://doi.org/10.1007/978-3-030-81170-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81170-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81169-3

  • Online ISBN: 978-3-030-81170-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics