Skip to main content

Mine Clearance through an Artificial Intelligence Flying Drone

  • Conference paper
  • First Online:
Advances in Nonlinear Dynamics

Abstract

This work presents an application to drone technology based on an algorithm which combines a convolutional neural network (CNN) and a symbolic data analysis (SDA) process to detect anti-personnel mines from GPR data acquisitions. The CNN is aimed at automatically detecting buried objects; the SDA reduces the probability of objects identified as mines, even though they are not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O.L.L. Tellez, B. Scheers, Ground penetrating radar for close in mine detection, in Mine Action, the Research Experience of the Royal Military Academy of Belgium, (IntechOpen, 2017)

    Google Scholar 

  2. P. Church, J.E. McFee, S. Gagnon, P. Wort, Electrical impedance tomographic imaging of buried landmines. IEEE Trans. Geosci. Remote Sens. 44(9), 2407–2420 (2006)

    Article  Google Scholar 

  3. M. Metwaly, G. El-Quady, J. Matsushima, S. Szalai, N.S.N. Al-Arifi, Contribution of 3-D electrical resistivity tomography for landmines detection. Nonlinear Process. Geophys. 15, 977–986 (2008)

    Article  Google Scholar 

  4. G. Zentai, X-ray imaging for homeland security. Inter. J. Signal Imaging Syst. Eng. 3(1), 13–20 (2010)

    Article  Google Scholar 

  5. S. Kaya, U.M. Leloglu, Buried and surface mine detection from thermal image time series. IEEE J. Select. Topics Appl. Earth Observat. Remote Sens. 10(10), 4544–4552 (2017)

    Article  Google Scholar 

  6. K. Takahashi, H. Preetz, J. Igel, Soil properties and performance of landmine detection by metal detector and ground-penetrating radar—Soil characterisation and its verification by a field test. J. Appl. Geophys. 73(4), 368–377 (2011)

    Article  Google Scholar 

  7. M.S. Korman, J.M. Sabatier, Nonlinear acoustic techniques for landmine detection. J. Acoust. Soc. Am. 116(6), 3354–3369 (2004)

    Article  Google Scholar 

  8. C. Mc Caffrey, N. Pesonen, I. Marttila, K. Nummila, Towards an Acousto-Ultrasonic Landmine Detector

    Google Scholar 

  9. J.S. Martin et al., Ultrasonic displacement sensor for the seismic detection of buried land mines. Inter. Soc. Optics Photon. 4742, 606–616 (2002)

    Google Scholar 

  10. A.G. Petculescu, J.M. Sabatier, Doppler ultrasound techniques for landmine detection. Inter. Soc. Optics Photon. 5415, 30–34 (2004)

    Google Scholar 

  11. L. Nesi, G. Pepe, M. Bibuli, E. Zereik, A. Carcaterra, M. Caccia, A new tow maneuver of a damaged boat through a swarm of autonomous sea drones. IFAC-PapersOnLine 52(21), 360–366 (2019)

    Article  Google Scholar 

  12. N. Roveri, A. Carcaterra, L. Molinari, G. Pepe, Safe and secure control of swarms of vehicles by small-world theory. Energies 13(5), 1043 (2020)

    Article  Google Scholar 

  13. D.J. Daniels, P. Curtis, Minehound TM trials in Cambodia, Bosnia, and Angola. Inter. Soc. Optics Photon. 6217, 62172N (2006)

    Google Scholar 

  14. P.D. Gader, M. Mystkowski, Y. Zhao, Landmine detection with ground penetrating radar using hidden Markov models. IEEE Trans. Geosci. Remote Sens. 39(6), 1231–1244 (2001)

    Article  Google Scholar 

  15. V. Kovalenko, A.G. Yarovoy, L.P. Ligthart, A novel clutter suppression algorithm for landmine detection with GPR. IEEE Trans. Geosci. Remote Sens. 45(11), 3740–3751 (2007)

    Article  Google Scholar 

  16. R. Solimene, A. Cuccaro, A. Dell’Aversano, I. Catapano, F. Soldovieri, Ground clutter removal in GPR surveys. IEEE J. Select. Topics Appl. Earth Observat. Remote Sens. 7(3), 792–798 (2013)

    Article  Google Scholar 

  17. O. Lopera, E.C. Slob, N. Milisavljevic, S. Lambot, Filtering soil surface and antenna effects from GPR data to enhance landmine detection. IEEE Trans. Geosci. Remote Sens. 45(3), 707–717 (2007)

    Article  Google Scholar 

  18. C. Warren, A. Giannopoulos, I. Giannakis, gprMax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar. Comput. Phys. Commun. 209, 163–170 (2016)

    Article  Google Scholar 

  19. P. Rai, S. Singh, A survey of clustering techniques. Inter. J. Comput. Appl. 7(12), 1–5 (2010)

    Google Scholar 

  20. H.-H. Bock and E. Diday, Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Springer Science & Business Media, 2012

    MATH  Google Scholar 

  21. K. Leonard, J.R. Peter, Finding groups in data: An introduction to cluster analysis, in Probability and Mathematical Statistics: Applied Probability and Statistics, (Wiley Series, 1990)

    Google Scholar 

  22. J.J. Van Wijk, E.R. Van Selow, Cluster and Calendar Based Visualization of Time Series Data (IEEE, 1999), pp. 4–9

    Google Scholar 

  23. X. Song, T. Liu, D. Xiang, Y. Su, GPR antipersonnel mine detection based on tensor robust principal analysis. Remote Sens. 11(8), 984 (2019)

    Article  Google Scholar 

  24. X. Núñez-Nieto, M. Solla, P. Gómez-Pérez, H. Lorenzo, GPR signal characterization for automated landmine and UXO detection based on machine learning techniques. Remote Sens. 6(10), 9729–9748 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The present project has been funded by the L’Oréal-UNESCO Foundation through the “For Women In Science” prize, 2019 edition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Mezzani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mezzani, F., Pepe, G., Roveri, N., Carcaterra, A. (2022). Mine Clearance through an Artificial Intelligence Flying Drone. In: Lacarbonara, W., Balachandran, B., Leamy, M.J., Ma, J., Tenreiro Machado, J.A., Stepan, G. (eds) Advances in Nonlinear Dynamics. NODYCON Conference Proceedings Series. Springer, Cham. https://doi.org/10.1007/978-3-030-81166-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81166-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81165-5

  • Online ISBN: 978-3-030-81166-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics