Skip to main content

Stochastic Resonances and Antiresonances in Rotating Mechanisms

  • Conference paper
  • First Online:
Advances in Nonlinear Dynamics

Abstract

Within the framework of vibrational mechanics, a general equation for the slow motion of a rotating mechanism in the presence of high-frequency stochastic excitation is obtained. This equation is similar to the initial equation in the absence of excitation with a modified inertial coefficient and dissipative function, which depend on the intensity of the random process. As an application, a centrifugal pendulum absorber with a high-frequency stochastic component in the rotation speed is considered. It is shown that its behaviour differs significantly from that of a standard pendulum without stochastic excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Gammaitoni, P. Hänggi, P. Jung, Stochastic resonance. Rev. Mod. Phys. 70(1), 223–287 (1998). https://doi.org/10.1103/RevModPhys.70.223

    Article  Google Scholar 

  2. I. Blekhman, Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications (World Scientific, Singapore, 2000)

    Book  Google Scholar 

  3. I. Blekhman, L. Vaisberg, D. Indeitsev, Theoretical and experimental basis of advanced vibrational technologies. Vib. Prob. ICOVP (2011). https://doi.org/10.1007/978-94-007-2069-5_18

  4. L. Vaisberg, Vibration technology research achievements of the Mekhanobr scientific school and their practical implementation. Vibroengineering Procedia 25, 76–82 (2019). https://doi.org/10.21595/vp.2019.20820

    Article  Google Scholar 

  5. И.И. Блехман, Л.А. Вайсберг, Б.П. Лавров, В.Б. Васильков, К.С. Якимова, Универсальный вибрационный стенд: опыт использования в исследованиях, некоторые результаты. Научно-технические ведомости СПбГТУ 3(33), 224–227 (2003). Russian. (LIBRARY ID: 24675872)

    Google Scholar 

  6. E. Kremer, Low-frequency dynamics of systems with modulated high-frequency stochastic excitation. J. Sound Vib. 437, 422–436 (2018)

    Article  Google Scholar 

  7. I. Blekhman, E. Kremer, Stochastic resonance as the averaged response to random broadband excitation and its possible applications. Proc. IMechE.. Pt .C J. Mech Eng Sci 233(23–24), 7445–7446 (2019)

    Google Scholar 

  8. J.P. Den Hartog, Mechanical Vibrations (McGraw-Hill, New York, 1956)

    MATH  Google Scholar 

  9. A. Kooy, A. Gillmann, J. Jäckel, M. Bosse, DMFW – Nothing new?, 6. LuK Symposium, 2002 (LuK GmbH & Co, Bühl/Baden, 2002)

    Google Scholar 

  10. T. Krause, E. Kremer, P. Movlazada, Theory and simulation of centrifugal pendulum absorber with trapezoidal suspension, in: Vibration Problems ICOVP 2011: 10th International Conference on Vibration Problems, Prague (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kremer, E. (2022). Stochastic Resonances and Antiresonances in Rotating Mechanisms. In: Lacarbonara, W., Balachandran, B., Leamy, M.J., Ma, J., Tenreiro Machado, J.A., Stepan, G. (eds) Advances in Nonlinear Dynamics. NODYCON Conference Proceedings Series. Springer, Cham. https://doi.org/10.1007/978-3-030-81162-4_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81162-4_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81161-7

  • Online ISBN: 978-3-030-81162-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics