Abstract
Within the framework of vibrational mechanics, a general equation for the slow motion of a rotating mechanism in the presence of high-frequency stochastic excitation is obtained. This equation is similar to the initial equation in the absence of excitation with a modified inertial coefficient and dissipative function, which depend on the intensity of the random process. As an application, a centrifugal pendulum absorber with a high-frequency stochastic component in the rotation speed is considered. It is shown that its behaviour differs significantly from that of a standard pendulum without stochastic excitation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
L. Gammaitoni, P. Hänggi, P. Jung, Stochastic resonance. Rev. Mod. Phys. 70(1), 223–287 (1998). https://doi.org/10.1103/RevModPhys.70.223
I. Blekhman, Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications (World Scientific, Singapore, 2000)
I. Blekhman, L. Vaisberg, D. Indeitsev, Theoretical and experimental basis of advanced vibrational technologies. Vib. Prob. ICOVP (2011). https://doi.org/10.1007/978-94-007-2069-5_18
L. Vaisberg, Vibration technology research achievements of the Mekhanobr scientific school and their practical implementation. Vibroengineering Procedia 25, 76–82 (2019). https://doi.org/10.21595/vp.2019.20820
И.И. Блехман, Л.А. Вайсберг, Б.П. Лавров, В.Б. Васильков, К.С. Якимова, Универсальный вибрационный стенд: опыт использования в исследованиях, некоторые результаты. Научно-технические ведомости СПбГТУ 3(33), 224–227 (2003). Russian. (LIBRARY ID: 24675872)
E. Kremer, Low-frequency dynamics of systems with modulated high-frequency stochastic excitation. J. Sound Vib. 437, 422–436 (2018)
I. Blekhman, E. Kremer, Stochastic resonance as the averaged response to random broadband excitation and its possible applications. Proc. IMechE.. Pt .C J. Mech Eng Sci 233(23–24), 7445–7446 (2019)
J.P. Den Hartog, Mechanical Vibrations (McGraw-Hill, New York, 1956)
A. Kooy, A. Gillmann, J. Jäckel, M. Bosse, DMFW – Nothing new?, 6. LuK Symposium, 2002 (LuK GmbH & Co, Bühl/Baden, 2002)
T. Krause, E. Kremer, P. Movlazada, Theory and simulation of centrifugal pendulum absorber with trapezoidal suspension, in: Vibration Problems ICOVP 2011: 10th International Conference on Vibration Problems, Prague (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kremer, E. (2022). Stochastic Resonances and Antiresonances in Rotating Mechanisms. In: Lacarbonara, W., Balachandran, B., Leamy, M.J., Ma, J., Tenreiro Machado, J.A., Stepan, G. (eds) Advances in Nonlinear Dynamics. NODYCON Conference Proceedings Series. Springer, Cham. https://doi.org/10.1007/978-3-030-81162-4_66
Download citation
DOI: https://doi.org/10.1007/978-3-030-81162-4_66
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81161-7
Online ISBN: 978-3-030-81162-4
eBook Packages: EngineeringEngineering (R0)