Abstract
Almost three decades ago, astrocytes neighbouring clock neurons of the suprachiasmatic nucleus, the hypothalamic tissue responsible for synchronising circadian timekeeping in mammals, were found to undergo morphological and protein expression changes in a cyclic 24-h pattern, suggesting that glia could harbour circadian timekeeping mechanisms and that neuron–glia interactions could play a part in the daily organisation of rhythms of physiology and behaviour. Recently, it has become clear that astrocytes are circadian timekeepers, capable of initiating daily patterns of behaviour and imposing their intrinsic circadian tempo in mammals. In this chapter, we will describe properties of intracellular timekeeping of astrocytes and the mechanisms by which astrocytes functionally integrate in brain circuits underlying circadian, sleep, and cognitive behaviours in mammals. We will then discuss how altered astrocyte timekeeping may be involved in early brain vulnerability underpinning neurodegeneration. We will focus on Alzheimer’s disease as a template of how altered astrocyte timekeeping may be involved in neurodegeneration, both directly via unbalancing of inflammatory and oxidative stress cellular pathways, and indirectly, by altering sleep and cognitive functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Acuna-Goycolea C, Obrietan K, van den Pol AN (2010) Cannabinoids excite circadian clock neurons. J Neurosci 30:10061–10066. https://doi.org/10.1523/JNEUROSCI.5838-09.2010
Alam MN, Kumar S, Rai S et al (2009) Role of adenosine A1 receptor in the perifornical–lateral hypothalamic area in sleep–wake regulation in rats. Brain Res 1304:96–104. https://doi.org/10.1016/j.brainres.2009.09.066
Ali AAH, Stahr A, Ingenwerth M et al (2019) Connexin30 and Connexin43 show a time-of-day dependent expression in the mouse suprachiasmatic nucleus and modulate rhythmic locomotor activity in the context of chronodisruption. Cell Commun Signal 17:61. https://doi.org/10.1186/s12964-019-0370-2
Ali AAH, Schwarz-Herzke B, Rollenhagen A et al (2020) Bmal1-deficiency affects glial synaptic coverage of the hippocampal mossy fiber synapse and the actin cytoskeleton in astrocytes. Glia 68:947–962. https://doi.org/10.1002/glia.23754
Amir S, Lamont EW, Robinson B, Stewart J (2004) A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. J Neurosci 24:781–790. https://doi.org/10.1523/JNEUROSCI.4488-03.2004
Ariznavarreta C, Cardinali DP, Villanúa MA et al (2002) Circadian rhythms in airline pilots submitted to long-haul transmeridian flights. Aviat Space Environ Med 73:445–455
Artiushin G, Sehgal A (2020) The glial perspective on sleep and circadian rhythms. Annu Rev Neurosci 43:119–140. https://doi.org/10.1146/annurev-neuro-091819-094557
Baeza-Raja B, Eckel-Mahan K, Zhang L et al (2013) p75 neurotrophin receptor is a clock gene that regulates oscillatory components of circadian and metabolic networks. J Neurosci 33:10221–10234. https://doi.org/10.1523/JNEUROSCI.2757-12.2013
Barca-Mayo O, Pons-Espinal M, Follert P et al (2017) Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun 8:14336. https://doi.org/10.1038/ncomms14336
Barnes CA, McNaughton BL, Goddard GV et al (1977) Circadian rhythm of synaptic excitability in rat and monkey central nervous system. Science 197:91–92. https://doi.org/10.1126/science.194313
Basu R, Sarma JD (2018) Connexin 43/47 channels are important for astrocyte/ oligodendrocyte cross-talk in myelination and demyelination. J Biosci 43:1055–1068
Baxter PS, Hardingham GE (2016) Adaptive regulation of the brain’s antioxidant defences by neurons and astrocytes. Free Radic Biol Med 100:147–152. https://doi.org/10.1016/j.freeradbiomed.2016.06.027
Beaulé C, Swanstrom A, Leone MJ, Herzog ED (2009) Circadian modulation of gene expression, but not glutamate uptake, in mouse and rat cortical astrocytes. PLoS One 4:e7476. https://doi.org/10.1371/journal.pone.0007476
Becquet D, Girardet C, Guillaumond F et al (2008) Ultrastructural plasticity in the rat suprachiasmatic nucleus. Possible involvement in clock entrainment. Glia 56:294–305. https://doi.org/10.1002/glia.20613
Bellesi M, de Vivo L, Tononi G, Cirelli C (2015) Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol 13:66. https://doi.org/10.1186/s12915-015-0176-7
Bellesi M, de Vivo L, Chini M et al (2017) Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J Neurosci 37:5263–5273. https://doi.org/10.1523/JNEUROSCI.3981-16.2017
Bell-Pedersen D, Cassone VM, Earnest DJ et al (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556. https://doi.org/10.1038/nrg1633
Benedict C, Cedernaes J, Giedraitis V et al (2014) Acute sleep deprivation increases serum levels of neuron-specific enolase (NSE) and S100 calcium binding protein B (S-100B) in healthy young men. Sleep 37:195–198. https://doi.org/10.5665/sleep.3336
Bhattacharya A, Vavra V, Svobodova I et al (2013) Potentiation of inhibitory synaptic transmission by extracellular ATP in rat suprachiasmatic nuclei. J Neurosci 33:8035–8044. https://doi.org/10.1523/JNEUROSCI.4682-12.2013
Bojarskaite L, Bjørnstad DM, Pettersen KH et al (2020) Astrocytic Ca 2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep. Nat Commun 11:3240. https://doi.org/10.1038/s41467-020-17062-2
Bokenberger K, Sjölander A, Dahl Aslan AK et al (2018) Shift work and risk of incident dementia: a study of two population-based cohorts. Eur J Epidemiol 33:977–987. https://doi.org/10.1007/s10654-018-0430-8
Bonneh-Barkay D, Wang G, LaFramboise WA et al (2012) Exacerbation of experimental autoimmune encephalomyelitis in the absence of breast regression protein 39/chitinase 3-like 1. J Neuropathol Exp Neurol 71:948–958. https://doi.org/10.1097/NEN.0b013e31826eaee7
Brancaccio M, Maywood ES, Chesham JE et al (2013) A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus. Neuron 78:714–728. https://doi.org/10.1016/j.neuron.2013.03.011
Brancaccio M, Patton AP, Chesham JE et al (2017) Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 93:1420–1435.e5. https://doi.org/10.1016/j.neuron.2017.02.030
Brancaccio M, Edwards MD, Patton AP et al (2019) Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science 363:187–192. https://doi.org/10.1126/science.aat4104
Broadhead MJ, Miles GB (2021) A common role for astrocytes in rhythmic behaviours? Prog Neurobiol. https://doi.org/10.1016/j.pneurobio.2021.102052
Burkeen JF, Womac AD, Earnest DJ, Zoran MJ (2011) Mitochondrial calcium signaling mediates rhythmic extracellular ATP accumulation in suprachiasmatic nucleus astrocytes. J Neurosci 31:8432–8440. https://doi.org/10.1523/JNEUROSCI.6576-10.2011
Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20:148–160. https://doi.org/10.1038/s41583-019-0132-6
Cagampang FR, Rattray M, Powell JF et al (1996) Circadian variation of EAAC1 glutamate transporter messenger RNA in the rat suprachiasmatic nuclei. Brain Res Mol Brain Res 35:190–196. https://doi.org/10.1016/0169-328x(95)00203-5
Carney RSE (2020) Astrocytes function as an intermediate for retrograde endocannabinoid signaling in the suprachiasmatic nucleus to influence circadian clock timing. eNeuro 7. https://doi.org/10.1523/ENEURO.0323-20.2020
Cavadini G, Petrzilka S, Kohler P et al (2007) TNF-alpha suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proc Natl Acad Sci U S A 104:12843–12848. https://doi.org/10.1073/pnas.0701466104
Cermakian N, Waddington Lamont E, Boudreau P, Boivin DB (2011) Circadian clock gene expression in brain regions of Alzheimer’s disease patients and control subjects. J Biol Rhythms 26:160–170. https://doi.org/10.1177/0748730410395732
Cermakian N, Westfall S, Kiessling S (2014) Circadian clocks and inflammation: reciprocal regulation and shared mediators. Arch Immunol Ther Exp 62:303–318. https://doi.org/10.1007/s00005-014-0286-x
Chatterjee P, Pedrini S, Stoops E et al (2021) Plasma glial fibrillary acidic protein is elevated in cognitively normal older adults at risk of Alzheimer’s disease. Transl Psychiatry 11:1–10. https://doi.org/10.1038/s41398-020-01137-1
Chaudhury D, Colwell CS (2002) Circadian modulation of learning and memory in fear-conditioned mice. Behav Brain Res 133:95–108. https://doi.org/10.1016/s0166-4328(01)00471-5
Chellappa SL, Morris CJ, Scheer FAJL (2019) Effects of circadian misalignment on cognition in chronic shift workers. Sci Rep 9:699. https://doi.org/10.1038/s41598-018-36762-w
Cho K (2001) Chronic “jet lag” produces temporal lobe atrophy and spatial cognitive deficits. Nat Neurosci 4:567–568. https://doi.org/10.1038/88384
Choi JY, Yeo IJ, Kim KC et al (2018) K284-6111 prevents the amyloid beta-induced neuroinflammation and impairment of recognition memory through inhibition of NF-κB-mediated CHI3L1 expression. J Neuroinflamm 15:224. https://doi.org/10.1186/s12974-018-1269-3
Colgin LL, Denninger T, Fyhn M et al (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357. https://doi.org/10.1038/nature08573
Colwell CS, Ghiani CA (2020) Potential circadian rhythms in oligodendrocytes? working together through time. Neurochem Res 45:591–605. https://doi.org/10.1007/s11064-019-02778-5
Condorelli DF, Belluardo N, Trovato-Salinaro A, Mudò G (2000) Expression of Cx36 in mammalian neurons. Brain Res Brain Res Rev 32:72–85. https://doi.org/10.1016/s0165-0173(99)00068-5
Cotrina ML, Gao Q, Lin JH, Nedergaard M (2001) Expression and function of astrocytic gap junctions in aging. Brain Res 901:55–61. https://doi.org/10.1016/s0006-8993(01)02258-2
Da Mesquita S, Louveau A, Vaccari A et al (2018) Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560:185–191. https://doi.org/10.1038/s41586-018-0368-8
Deboer T (2020) Circadian regulation of sleep in mammals. Curr Opin Physiol 15:89–95. https://doi.org/10.1016/j.cophys.2019.12.015
Debski KJ, Ceglia N, Ghestem A et al (2020) The circadian dynamics of the hippocampal transcriptome and proteome is altered in experimental temporal lobe epilepsy. Sci Adv 6. https://doi.org/10.1126/sciadv.aat5979
DiNuzzo M, Nedergaard M (2017) Brain energetics during the sleep-wake cycle. Curr Opin Neurobiol 47:65–72. https://doi.org/10.1016/j.conb.2017.09.010
Duffy JF, Zitting K-M, Chinoy ED (2015) Aging and circadian rhythms. Sleep Med Clin 10:423–434. https://doi.org/10.1016/j.jsmc.2015.08.002
Duhart JM, Leone MJ, Paladino N et al (2013) Suprachiasmatic astrocytes modulate the circadian clock in response to TNF-α. J Immunol 191:4656–4664. https://doi.org/10.4049/jimmunol.1300450
Duhart JM, Brocardo L, Mul Fedele ML et al (2016) CCL2 mediates the circadian response to low dose endotoxin. Neuropharmacology 108:373–381. https://doi.org/10.1016/j.neuropharm.2016.05.005
Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468:223–231. https://doi.org/10.1038/nature09612
Fasciani I, Pluta P, González-Nieto D et al (2018) Directional coupling of oligodendrocyte connexin-47 and astrocyte connexin-43 gap junctions. Glia 66:2340–2352. https://doi.org/10.1002/glia.23471
Floyd RA, Krueger JM (1997) Diurnal variation of TNFα in the rat brain. NeuroReport 8:915–918
Fonken LK, Frank MG, Kitt MM et al (2015) Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun 45:171–179. https://doi.org/10.1016/j.bbi.2014.11.009
Franken P (2013) A role for clock genes in sleep homeostasis. Curr Opin Neurobiol 23:864–872. https://doi.org/10.1016/j.conb.2013.05.002
Frey DJ, Fleshner M, Wright KP (2007) The effects of 40 hours of total sleep deprivation on inflammatory markers in healthy young adults. Brain Behav Immun 21:1050–1057. https://doi.org/10.1016/j.bbi.2007.04.003
Gerstner JR, Paschos GK (2020) Circadian expression of Fabp7 mRNA is disrupted in Bmal1 KO mice. Mol Brain 13:26. https://doi.org/10.1186/s13041-020-00568-7
Gerstner JR, Bremer QZ, Heyden WMV et al (2008) Brain fatty acid binding protein (Fabp7) is diurnally regulated in astrocytes and hippocampal granule cell precursors in adult rodent brain. PLoS One 3:e1631. https://doi.org/10.1371/journal.pone.0001631
Gerstner JR, Perron IJ, Riedy SM et al (2017) Normal sleep requires the astrocyte brain-type fatty acid binding protein FABP7. Sci Adv 3:e1602663. https://doi.org/10.1126/sciadv.1602663
Giaume C, Koulakoff A, Roux L et al (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99. https://doi.org/10.1038/nrn2757
Giaume C, Naus CC, Sáez JC, Leybaert L (2020) Glial connexins and pannexins in the healthy and diseased brain. Physiol Rev 101:93–145. https://doi.org/10.1152/physrev.00043.2018
González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K et al (2017) Involvement of astrocytes in Alzheimer’s disease from a neuroinflammatory and oxidative stress perspective. Front Mol Neurosci 10. https://doi.org/10.3389/fnmol.2017.00427
Griffin P, Sheehan PW, Dimitry JM et al (2020) REV-ERBα mediates complement expression and diurnal regulation of microglial synaptic phagocytosis. eLife 9:e58765. https://doi.org/10.7554/eLife.58765
Grolla AA, Fakhfouri G, Balzaretti G et al (2013) Aβ leads to Ca2+ signaling alterations and transcriptional changes in glial cells. Neurobiol Aging 34:511–522. https://doi.org/10.1016/j.neurobiolaging.2012.05.005
Hablitz LM, Gunesch AN, Cravetchi O et al (2020a) Cannabinoid signaling recruits astrocytes to modulate presynaptic function in the suprachiasmatic nucleus. eNeuro 7. https://doi.org/10.1523/ENEURO.0081-19.2020
Hablitz LM, Plá V, Giannetto M et al (2020b) Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun 11:4411. https://doi.org/10.1038/s41467-020-18115-2
Halassa MM, Florian C, Fellin T et al (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61:213–219. https://doi.org/10.1016/j.neuron.2008.11.024
Harper DG, Volicer L, Stopa EG et al (2005) Disturbance of endogenous circadian rhythm in aging and Alzheimer disease. Am J Geriatr Psychiatry 13:359–368. https://doi.org/10.1176/appi.ajgp.13.5.359
Harper DG, Stopa EG, Kuo-Leblanc V et al (2008) Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia. Brain 131:1609–1617. https://doi.org/10.1093/brain/awn049
Harris AL (2007) Connexin channel permeability to cytoplasmic molecules. Prog Biophys Mol Biol 94:120–143. https://doi.org/10.1016/j.pbiomolbio.2007.03.011
Hastings MH, Maywood ES, Brancaccio M (2018) Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci 19:453. https://doi.org/10.1038/s41583-018-0026-z
Hastings MH, Maywood ES, Brancaccio M (2019) The mammalian circadian timing system and the suprachiasmatic nucleus as its pacemaker. Biology 8:13. https://doi.org/10.3390/biology8010013
Haydon PG (2017) Astrocytes and the modulation of sleep. Curr Opin Neurobiol 44:28–33. https://doi.org/10.1016/j.conb.2017.02.008
Hegyi Z, Oláh T, Kőszeghy Á et al (2018) CB 1 receptor activation induces intracellular Ca 2+ mobilization and 2-arachidonoylglycerol release in rodent spinal cord astrocytes. Sci Rep 8:10562. https://doi.org/10.1038/s41598-018-28763-6
Holth J, Patel T, Holtzman DM (2017) Sleep in Alzheimer’s disease—beyond amyloid. Neurobiol Sleep Circadian Rhythms 2:4–14. https://doi.org/10.1016/j.nbscr.2016.08.002
Holth JK, Fritschi SK, Wang C et al (2019) The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science 363:880–884. https://doi.org/10.1126/science.aav2546
Houades V, Koulakoff A, Ezan P et al (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 28:5207–5217. https://doi.org/10.1523/JNEUROSCI.5100-07.2008
Iliff JJ, Wang M, Liao Y et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111. https://doi.org/10.1126/scitranslmed.3003748
Iliff JJ, Chen MJ, Plog BA et al (2014) Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34:16180–16193. https://doi.org/10.1523/JNEUROSCI.3020-14.2014
Ingiosi AM, Hayworth CR, Harvey DO et al (2020) A role for astroglial calcium in mammalian sleep and sleep regulation. Curr Biol 30:4373–4383.e7. https://doi.org/10.1016/j.cub.2020.08.052
Iranzo A (2016) Sleep in neurodegenerative diseases. Sleep Med Clin 11:1–18. https://doi.org/10.1016/j.jsmc.2015.10.011
Ishii T, Warabi E, Mann GE (2019) Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopaminergic neurons from ferroptosis. Free Radic Biol Med 133:169–178. https://doi.org/10.1016/j.freeradbiomed.2018.09.002
Itri J, Michel S, Waschek JA, Colwell CS (2004) Circadian rhythm in inhibitory synaptic transmission in the mouse suprachiasmatic nucleus. J Neurophysiol 92:311–319. https://doi.org/10.1152/jn.01078.2003
Jagannath A, Varga N, Dallmann R et al (2021) Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice. Nat Commun 12:2113. https://doi.org/10.1038/s41467-021-22179-z
Jagust W (2018) Imaging the evolution and pathophysiology of Alzheimer disease. Nat Rev Neurosci 19:687–700. https://doi.org/10.1038/s41583-018-0067-3
Jørgensen JT, Karlsen S, Stayner L et al (2017) Shift work and overall and cause-specific mortality in the Danish nurse cohort. Scand J Work Environ Health 43:117–126. https://doi.org/10.5271/sjweh.3612
Kamasawa N, Sik A, Morita M et al (2005) Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning. Neuroscience 136:65–86. https://doi.org/10.1016/j.neuroscience.2005.08.027
Kang J-E, Lim MM, Bateman RJ et al (2009) Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 326:1005–1007. https://doi.org/10.1126/science.1180962
Karatsoreos IN, Bhagat S, Bloss EB et al (2011) Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. PNAS 108:1657–1662. https://doi.org/10.1073/pnas.1018375108
Kay CWP, Ursu D, Sher E, King AE (2016) The role of Cx36 and Cx43 in 4-aminopyridine-induced rhythmic activity in the spinal nociceptive dorsal horn: an electrophysiological study in vitro. Physiol Rep 4. https://doi.org/10.14814/phy2.12852
Kerins MJ, Ooi A (2017) The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal 29:1756–1773. https://doi.org/10.1089/ars.2017.7176
Kress GJ, Liao F, Dimitry J et al (2018) Regulation of amyloid-β dynamics and pathology by the circadian clock. J Exp Med 215:1059–1068. https://doi.org/10.1084/jem.20172347
Kwak Y, Lundkvist GB, Brask J et al (2008) Interferon-γ alters electrical activity and clock gene expression in suprachiasmatic nucleus neurons. J Biol Rhythms 23:150–159. https://doi.org/10.1177/0748730407313355
Lan Y-L, Zhao J, Ma T, Li S (2016) The potential roles of aquaporin 4 in Alzheimer’s disease. Mol Neurobiol 53:5300–5309. https://doi.org/10.1007/s12035-015-9446-1
Lananna BV, Nadarajah CJ, Izumo M et al (2018) Cell-autonomous regulation of astrocyte activation by the circadian clock protein BMAL1. Cell Rep 25:1–9.e5. https://doi.org/10.1016/j.celrep.2018.09.015
Lananna BV, McKee CA, King MW et al (2020) Chi3l1/YKL-40 is controlled by the astrocyte circadian clock and regulates neuroinflammation and Alzheimer’s disease pathogenesis. Sci Transl Med 12. https://doi.org/10.1126/scitranslmed.aax3519
Lavialle M, Servière J (1993) Circadian fluctuations in GFAP distribution in the Syrian hamster suprachiasmatic nucleus. Neuroreport 4:1243–1246. https://doi.org/10.1097/00001756-199309000-00008
Lazarus M, Chen J-F, Huang Z-L et al (2019) Adenosine and sleep. In: Landolt H-P, Dijk D-J (eds) Sleep-wake neurobiology and pharmacology. Springer, Cham, pp 359–381
Lee S, Yoon B-E, Berglund K et al (2010) Channel-mediated tonic GABA release from glia. Science 330:790–796. https://doi.org/10.1126/science.1184334
Leng Y, Musiek ES, Hu K et al (2019) Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol 18:307–318. https://doi.org/10.1016/S1474-4422(18)30461-7
Li P, Gao L, Gaba A et al (2020) Circadian disturbances in Alzheimer’s disease progression: a prospective observational cohort study of community-based older adults. Lancet Healthy Longev 1:e96–e105. https://doi.org/10.1016/S2666-7568(20)30015-5
Lian H, Litvinchuk A, Chiang AC-A et al (2016) Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J Neurosci 36:577–589. https://doi.org/10.1523/JNEUROSCI.2117-15.2016
Liddelow SA, Guttenplan KA, Clarke LE et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487. https://doi.org/10.1038/nature21029
Liedhegner ES, Sasman A, Hillard CJ (2014) Brain region-specific changes in N-acylethanolamine contents with time of day. J Neurochem 128:491–506. https://doi.org/10.1111/jnc.12495
Lim ASP, Kowgier M, Yu L et al (2013) Sleep fragmentation and the risk of incident Alzheimer’s disease and cognitive decline in older persons. Sleep 36:1027–1032. https://doi.org/10.5665/sleep.2802
Linnerbauer M, Wheeler MA, Quintana FJ (2020) Astrocyte crosstalk in CNS inflammation. Neuron 108:608–622. https://doi.org/10.1016/j.neuron.2020.08.012
Long JM, Holtzman DM (2019) Alzheimer disease: an update on pathobiology and treatment strategies. Cell 179:312–339. https://doi.org/10.1016/j.cell.2019.09.001
Lucey BP, Hicks TJ, McLeland JS et al (2018) Effect of sleep on overnight cerebrospinal fluid amyloid β kinetics. Ann Neurol 83:197–204. https://doi.org/10.1002/ana.25117
Lundgaard I, Lu ML, Yang E et al (2017) Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab 37:2112–2124. https://doi.org/10.1177/0271678X16661202
Marpegan L, Krall TJ, Herzog ED (2009) Vasoactive intestinal polypeptide entrains circadian rhythms in astrocytes. J Biol Rhythms 24:135–143. https://doi.org/10.1177/0748730409332042
Marpegan L, Swanstrom AE, Chung K et al (2011) Circadian regulation of ATP release in astrocytes. J Neurosci 31:8342–8350. https://doi.org/10.1523/JNEUROSCI.6537-10.2011
Marsicano G, Goodenough S, Monory K et al (2003) CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302:84–88. https://doi.org/10.1126/science.1088208
Martin LJ, Zurek AA, MacDonald JF et al (2010) α5GABAA receptor activity sets the threshold for long-term potentiation and constrains hippocampus-dependent memory. J Neurosci 30:5269–5282. https://doi.org/10.1523/JNEUROSCI.4209-09.2010
Marvin JS, Borghuis BG, Tian L et al (2013) An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat Methods 10:162–170. https://doi.org/10.1038/nmeth.2333
Mawuenyega KG, Sigurdson W, Ovod V et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330:1774. https://doi.org/10.1126/science.1197623
McCauley JP, Petroccione MA, D’Brant LY et al (2020) Circadian modulation of neurons and astrocytes controls synaptic plasticity in hippocampal area CA1. Cell Rep 33:108255. https://doi.org/10.1016/j.celrep.2020.108255
Meng Q-J, Logunova L, Maywood ES et al (2008) Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58:78–88. https://doi.org/10.1016/j.neuron.2008.01.019
Menichella DM, Majdan M, Awatramani R et al (2006) Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity. J Neurosci 26:10984–10991. https://doi.org/10.1523/JNEUROSCI.0304-06.2006
Mestre H, Hablitz LM, Xavier AL et al (2018) Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife 7:e40070. https://doi.org/10.7554/eLife.40070
Motzkus D, Albrecht U, Maronde E (2002) The human PER1 gene is inducible by interleukin-6. J Mol Neurosci 18:105–109. https://doi.org/10.1385/JMN:18:1-2:105
Murillo-Rodriguez E, Désarnaud F, Prospéro-García O (2006) Diurnal variation of arachidonoylethanolamine, palmitoylethanolamide and oleoylethanolamide in the brain of the rat. Life Sci 79:30–37. https://doi.org/10.1016/j.lfs.2005.12.028
Musiek ES, Lim MM, Yang G et al (2013) Circadian clock proteins regulate neuronal redox homeostasis and neurodegeneration. J Clin Invest 123:5389–5400. https://doi.org/10.1172/JCI70317
Musiek ES, Bhimasani M, Zangrilli MA et al (2018) Circadian rest-activity pattern changes in aging and preclinical Alzheimer disease. JAMA Neurol 75:582–590. https://doi.org/10.1001/jamaneurol.2017.4719
Myung J, Schmal C, Hong S et al (2018) The choroid plexus is an important circadian clock component. Nat Commun 9:1062. https://doi.org/10.1038/s41467-018-03507-2
Nagai J, Yu X, Papouin T et al (2021) Behaviorally consequential astrocytic regulation of neural circuits. Neuron 109:576–596. https://doi.org/10.1016/j.neuron.2020.12.008
Nagy JI, Patel D, Ochalski PA, Stelmack GL (1999) Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience 88:447–468. https://doi.org/10.1016/s0306-4522(98)00191-2
Nagy JI, Ionescu A-V, Lynn BD, Rash JE (2003) Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: implications from normal and connexin32 knockout mice. Glia 44:205–218. https://doi.org/10.1002/glia.10278
Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Rev 47:191–215. https://doi.org/10.1016/j.brainresrev.2004.05.005
Nakanishi H, Ni J, Nonaka S, Hayashi Y (2021) Microglial circadian clock regulation of microglial structural complexity, dendritic spine density and inflammatory response. Neurochem Int 142:104905. https://doi.org/10.1016/j.neuint.2020.104905
Nakazato R, Kawabe K, Yamada D et al (2017) Disruption of Bmal1 impairs blood-brain barrier integrity via pericyte dysfunction. J Neurosci 37:10052–10062. https://doi.org/10.1523/JNEUROSCI.3639-16.2017
Navarrete M, Araque A (2008) Endocannabinoids mediate neuron-astrocyte communication. Neuron 57:883–893. https://doi.org/10.1016/j.neuron.2008.01.029
Nedergaard M, Goldman SA (2020) Glymphatic failure as a final common pathway to dementia. Science 370:50–56. https://doi.org/10.1126/science.abb8739
Nilsson C, Ståhlberg F, Thomsen C et al (1992) Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am J Physiol 262:R20–R24. https://doi.org/10.1152/ajpregu.1992.262.1.R20
Nishida H, Okabe S (2007) Direct astrocytic contacts regulate local maturation of dendritic spines. J Neurosci 27:331–340. https://doi.org/10.1523/JNEUROSCI.4466-06.2007
Oeckl P, Halbgebauer S, Anderl-Straub S et al (2019) Glial fibrillary acidic protein in serum is increased in Alzheimer’s disease and correlates with cognitive impairment. J Alzheimers Dis 67:481–488. https://doi.org/10.3233/JAD-180325
Owen JE, Veasey SC (2020) Impact of sleep disturbances on neurodegeneration: insight from studies in animal models. Neurobiol Dis 139:104820. https://doi.org/10.1016/j.nbd.2020.104820
Pannasch U, Vargová L, Reingruber J et al (2011) Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci U S A 108:8467–8472. https://doi.org/10.1073/pnas.1016650108
Papaneophytou C, Georgiou E, Kleopa KA (2019) The role of oligodendrocyte gap junctions in neuroinflammation. Channels (Austin) 13:247–263. https://doi.org/10.1080/19336950.2019.1631107
Parys B, Côté A, Gallo V et al (2010) Intercellular calcium signaling between astrocytes and oligodendrocytes via gap junctions in culture. Neuroscience 167:1032–1043. https://doi.org/10.1016/j.neuroscience.2010.03.004
Pascual O, Casper KB, Kubera C et al (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–116. https://doi.org/10.1126/science.1116916
Pelluru D, Konadhode RR, Bhat NR, Shiromani PJ (2016) Optogenetic stimulation of astrocytes in the posterior hypothalamus increases sleep at night in C57BL/6J mice. Eur J Neurosci 43:1298–1306. https://doi.org/10.1111/ejn.13074
Poskanzer KE, Yuste R (2016) Astrocytes regulate cortical state switching in vivo. Proc Natl Acad Sci U S A 113:E2675–E2684. https://doi.org/10.1073/pnas.1520759113
Prolo LM, Takahashi JS, Herzog ED (2005) Circadian rhythm generation and entrainment in astrocytes. J Neurosci 25:404–408. https://doi.org/10.1523/JNEUROSCI.4133-04.2005
Raghavan AV, Horowitz JM, Fuller CA (1999) Diurnal modulation of long-term potentiation in the hamster hippocampal slice. Brain Research 833:311–314. https://doi.org/10.1016/S0006-8993(99)01523-1
Rainey-Smith SR, Mazzucchelli GN, Villemagne VL et al (2018) Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Aβ-amyloid burden. Transl Psychiatry 8:47. https://doi.org/10.1038/s41398-018-0094-x
Rajendran L, Paolicelli RC (2018) Microglia-mediated synapse loss in Alzheimer’s disease. J Neurosci 38:2911–2919. https://doi.org/10.1523/JNEUROSCI.1136-17.2017
Rasmussen MK, Mestre H, Nedergaard M (2018) The glymphatic pathway in neurological disorders. Lancet Neurol 17:1016–1024. https://doi.org/10.1016/S1474-4422(18)30318-1
Rinholm JE, Hamilton NB, Kessaris N et al (2011) Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci 31:538–548. https://doi.org/10.1523/JNEUROSCI.3516-10.2011
Rinholm JE, Vervaeke K, Tadross MR et al (2016) Movement and structure of mitochondria in oligodendrocytes and their myelin sheaths. Glia 64:810–825. https://doi.org/10.1002/glia.22965
Risher WC, Patel S, Kim IH et al (2014) Astrocytes refine cortical connectivity at dendritic spines. eLife 3:e04047. https://doi.org/10.7554/eLife.04047
Ronco V, Grolla AA, Glasnov TN et al (2014) Differential deregulation of astrocytic calcium signalling by amyloid-β, TNFα, IL-1β and LPS. Cell Calcium 55:219–229. https://doi.org/10.1016/j.ceca.2014.02.016
Rouach N, Koulakoff A, Abudara V et al (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555. https://doi.org/10.1126/science.1164022
Roy U, Heredia-Muñoz MT, Stute L et al (2019) Degeneration of the suprachiasmatic nucleus in an Alzheimer’s disease mouse model monitored by in vivo magnetic resonance relaxation measurements and immunohistochemistry. J Alzheimers Dis 69:363–375. https://doi.org/10.3233/JAD-190037
Schnell A, Chappuis S, Schmutz I et al (2014) The nuclear receptor REV-ERBα regulates Fabp7 and modulates adult hippocampal neurogenesis. PLoS One 9:e99883. https://doi.org/10.1371/journal.pone.0099883
Shinozaki Y, Nomura M, Iwatsuki K et al (2014) Microglia trigger astrocyte-mediated neuroprotection via purinergic gliotransmission. Sci Rep 4:4329. https://doi.org/10.1038/srep04329
Spanagel R, Pendyala G, Abarca C et al (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 11:35–42. https://doi.org/10.1038/nm1163
Stopa EG, Volicer L, Kuo-Leblanc V et al (1999) Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J Neuropathol Exp Neurol 58:29–39
Sugimoto T, Morioka N, Zhang FF et al (2014) Clock gene Per1 regulates the production of CCL2 and interleukin-6 through p38, JNK1 and NF-κB activation in spinal astrocytes. Mol Cell Neurosci 59:37–46. https://doi.org/10.1016/j.mcn.2014.01.003
Sun D, Jakobs TC (2012) Structural remodeling of astrocytes in the injured CNS. Neuroscientist 18:567–588. https://doi.org/10.1177/1073858411423441
Svobodova I, Bhattaracharya A, Ivetic M et al (2018) Circadian ATP release in organotypic cultures of the rat suprachiasmatic nucleus is dependent on P2X7 and P2Y receptors. Front Pharmacol 9. https://doi.org/10.3389/fphar.2018.00192
Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 342:37–44. https://doi.org/10.1016/0006-8993(85)91350-2
Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18:164–179. https://doi.org/10.1038/nrg.2016.150
Teismann P, Tieu K, Choi D-K et al (2003) Cyclooxygenase-2 is instrumental in Parkinson’s disease neurodegeneration. PNAS 100:5473–5478. https://doi.org/10.1073/pnas.0837397100
Tönnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis 57:1105–1121. https://doi.org/10.3233/JAD-161088
Tranah GJ, Blackwell T, Stone KL et al (2011) Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann Neurol 70:722–732. https://doi.org/10.1002/ana.22468
Tso CF, Simon T, Greenlaw AC et al (2017) Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior. Curr Biol 27:1055–1061. https://doi.org/10.1016/j.cub.2017.02.037
Vainchtein ID, Molofsky AV (2020) Astrocytes and microglia: in sickness and in health. Trends Neurosci 43:144–154. https://doi.org/10.1016/j.tins.2020.01.003
Vainchtein ID, Chin G, Cho FS et al (2018) Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science 359:1269–1273. https://doi.org/10.1126/science.aal3589
Valenti M, Viganò D, Casico MG et al (2004) Differential diurnal variations of anandamide and 2-arachidonoyl-glycerol levels in rat brain. Cell Mol Life Sci 61:945–950. https://doi.org/10.1007/s00018-003-3453-5
van der Horst GT, Muijtjens M, Kobayashi K et al (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–630. https://doi.org/10.1038/19323
Volicer L, Harper DG, Manning BC et al (2001) Sundowning and circadian rhythms in Alzheimer’s disease. AJP 158:704–711. https://doi.org/10.1176/appi.ajp.158.5.704
Wagner S, Castel M, Gainer H, Yarom Y (1997) GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 387:598–603. https://doi.org/10.1038/42468
Wall MJ, Dale N (2013) Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus. J Physiol 591:3853–3871. https://doi.org/10.1113/jphysiol.2013.253450
Walter L, Stella N (2003) Endothelin-1 increases 2-arachidonoyl glycerol (2-AG) production in astrocytes. Glia 44:85–90. https://doi.org/10.1002/glia.10270
Walter L, Dinh T, Stella N (2004) ATP induces a rapid and pronounced increase in 2-arachidonoylglycerol production by astrocytes, a response limited by monoacylglycerol lipase. J Neurosci 24:8068–8074. https://doi.org/10.1523/JNEUROSCI.2419-04.2004
Wang TA, Yu YV, Govindaiah G et al (2012) Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 337:839–842. https://doi.org/10.1126/science.1222826
Wang N, De Bock M, Decrock E et al (2013) Paracrine signaling through plasma membrane hemichannels. Biochimica et Biophysica Acta (BBA) Biomembr 1828:35–50. https://doi.org/10.1016/j.bbamem.2012.07.002
Wardlaw SM, Phan TX, Saraf A et al (2014) Genetic disruption of the core circadian clock impairs hippocampus-dependent memory. Learn Mem 21:417–423. https://doi.org/10.1101/lm.035451.114
Whiten DR, Brownjohn PW, Moore S et al (2020) Tumour necrosis factor induces increased production of extracellular amyloid-β- and α-synuclein-containing aggregates by human Alzheimer’s disease neurons. Brain Commun 2. https://doi.org/10.1093/braincomms/fcaa146
Wildsmith KR, Holley M, Savage JC et al (2013) Evidence for impaired amyloid β clearance in Alzheimer’s disease. Alzheimers Res Ther 5:33. https://doi.org/10.1186/alzrt187
Wiley CA, Bonneh-Barkay D, Dixon CE et al (2015) Role for mammalian chitinase 3-like protein 1 in traumatic brain injury. Neuropathology 35:95–106. https://doi.org/10.1111/neup.12158
Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH (2004) The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol 14:1481–1486. https://doi.org/10.1016/j.cub.2004.08.023
Wolff SEC, Wang X-L, Jiao H et al (2020) The effect of Rev-erbα agonist SR9011 on the immune response and cell metabolism of microglia. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.550145
Womac AD, Burkeen JF, Neuendorff N et al (2009) Circadian rhythms of extracellular ATP accumulation in suprachiasmatic nucleus cells and cultured astrocytes. Eur J Neurosci 30:869–876. https://doi.org/10.1111/j.1460-9568.2009.06874.x
Xie L, Kang H, Xu Q et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377. https://doi.org/10.1126/science.1241224
Yamazaki S, Ishida Y, Inouye S (1994) Circadian rhythms of adenosine triphosphate contents in the suprachiasmatic nucleus, anterior hypothalamic area and caudate putamen of the rat—negative correlation with electrical activity. Brain Res 664:237–240. https://doi.org/10.1016/0006-8993(94)91978-x
Ye Z-C, Wyeth MS, Baltan-Tekkok S, Ransom BR (2003) Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci 23:3588–3596. https://doi.org/10.1523/JNEUROSCI.23-09-03588.2003
Yum SW, Zhang J, Valiunas V et al (2007) Human connexin26 and connexin30 form functional heteromeric and heterotypic channels. Am J Physiol Cell Physiol 293:C1032–C1048. https://doi.org/10.1152/ajpcell.00011.2007
Zeppenfeld DM, Simon M, Haswell JD et al (2017) Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol 74:91–99. https://doi.org/10.1001/jamaneurol.2016.4370
Zheng C, Bieri KW, Hwaun E, Colgin LL (2016) Fast gamma rhythms in the hippocampus promote encoding of novel object–place pairings. eNeuro 3. https://doi.org/10.1523/ENEURO.0001-16.2016
Acknowledgements
Figures created with BioRender.com. This work is supported by the UK Dementia Research Institute which receives its funding from UK DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK. NN was also supported by an Imperial College President’s PhD Scholarship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Brancaccio, M., Wolfes, A.C., Ness, N. (2021). Astrocyte Circadian Timekeeping in Brain Health and Neurodegeneration. In: Engmann, O., Brancaccio, M. (eds) Circadian Clock in Brain Health and Disease. Advances in Experimental Medicine and Biology, vol 1344. Springer, Cham. https://doi.org/10.1007/978-3-030-81147-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-81147-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81146-4
Online ISBN: 978-3-030-81147-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)