Abstract
The suprachiasmatic nucleus houses the master clock, but the genes which encode the circadian clock components are also expressed throughout the brain. Here, we review how circadian clock transcription factors regulate neuromodulator systems such as histamine, dopamine, and orexin that promote arousal. These circadian transcription factors all lead to repression of the histamine, dopamine, and orexin systems during the sleep period, so ensuring integration with the ecology of the animal. If these transcription factors are deleted or mutated, in addition to the global disturbances in circadian rhythms, this causes a chronic up-regulation of neuromodulators leading to hyperactivity, elevated mood, and reduced sleep, which have been suggested to be states resembling mania.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adamantidis AR, Gutierrez Herrera C, Gent TC (2019) Oscillating circuitries in the sleeping brain. Nat Rev Neurosci 20(12):746–762. https://doi.org/10.1038/s41583-019-0223-4
Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, Fuller PM (2014) The GABAergic parafacial zone is a medullary slow wave sleep-promoting center. Nat Neurosci 17(9):1217–1224. https://doi.org/10.1038/nn.3789
Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J, von Schantz M (2003) A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26(4):413–415. https://doi.org/10.1093/sleep/26.4.413
Archer SN, Schmidt C, Vandewalle G, Dijk DJ (2018) Phenotyping of PER3 variants reveals widespread effects on circadian preference, sleep regulation, and health. Sleep Med Rev 40:109–126. https://doi.org/10.1016/j.smrv.2017.10.008
Aschoff J (1965) Circadian rhythms in man. Science 148(3676):1427–1432. https://doi.org/10.1126/science.148.3676.1427
Ashbrook LH, Krystal AD, Fu YH, Ptacek LJ (2020) Genetics of the human circadian clock and sleep homeostat. Neuropsychopharmacology 45(1):45–54. https://doi.org/10.1038/s41386-019-0476-7
Bano-Otalora B, Piggins HD (2017) Contributions of the lateral habenula to circadian timekeeping. Pharmacol Biochem Behav 162:46–54. https://doi.org/10.1016/j.pbb.2017.06.007
Belle MD, Diekman CO, Forger DB, Piggins HD (2009) Daily electrical silencing in the mammalian circadian clock. Science 326(5950):281–284. https://doi.org/10.1126/science.1169657
Blum ID, Bell B, Wu MN (2018) Time for bed: genetic mechanisms mediating the circadian regulation of sleep. Trends Genet 34(5):379–388. https://doi.org/10.1016/j.tig.2018.01.001
Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1(3):195–204
Borbely AA, Daan S, Wirz-Justice A, Deboer T (2016) The two-process model of sleep regulation: a reappraisal. J Sleep Res 25(2):131–143. https://doi.org/10.1111/jsr.12371
Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH (2017) Astrocytes control circadian timekeeping in the suprachiasmatic nucleus via glutamatergic signaling. Neuron 93(6):1420–1435. https://doi.org/10.1016/j.neuron.2017.02.030
Brancaccio M, Edwards MD, Patton AP, Smyllie NJ, Chesham JE, Maywood ES, Hastings MH (2019) Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science 363(6423):187–192. https://doi.org/10.1126/science.aat4104
Castel M, Morris JF (2000) Morphological heterogeneity of the GABAergic network in the suprachiasmatic nucleus, the brain’s circadian pacemaker. J Anat 196(Pt 1):1–13. https://doi.org/10.1046/j.1469-7580.2000.19610001.x
Cedernaes J, Waldeck N, Bass J (2019) Neurogenetic basis for circadian regulation of metabolism by the hypothalamus. Genes Dev 33(17–18):1136–1158. https://doi.org/10.1101/gad.328633.119
Chung S, Lee EJ, Yun S, Choe HK, Park SB, Son HJ, Kim KS, Dluzen DE, Lee I, Hwang O, Son GH, Kim K (2014) Impact of circadian nuclear receptor REV-ERBalpha on midbrain dopamine production and mood regulation. Cell 157(4):858–868. https://doi.org/10.1016/j.cell.2014.03.039
Collins B, Pierre-Ferrer S, Muheim C, Lukacsovich D, Cai Y, Spinnler A, Herrera CG, Wen S, Winterer J, Belle MDC, Piggins HD, Hastings M, Loudon A, Yan J, Foldy C, Adamantidis A, Brown SA (2020) Circadian VIPergic neurons of the suprachiasmatic nuclei sculpt the sleep-wake cycle. Neuron. https://doi.org/10.1016/j.neuron.2020.08.001
Cox KH, Takahashi JS (2019) Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol 63(4):R93–R102. https://doi.org/10.1530/Jme-19-0153
Deboer T (2018) Sleep homeostasis and the circadian clock: do the circadian pacemaker and the sleep homeostat influence each other’s functioning? Neurobiol Sleep Circadian Rhythms 5:68–77. https://doi.org/10.1016/j.nbscr.2018.02.003
Deboer T, Vansteensel MJ, Detari L, Meijer JH (2003) Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6(10):1086–1090. https://doi.org/10.1038/nn1122
Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15(5 Pt 1):3526–3538
Eastman CI, Mistlberger RE, Rechtschaffen A (1984) Suprachiasmatic nuclei lesions eliminate circadian temperature and sleep rhythms in the rat. Physiol Behav 32(3):357–368. https://doi.org/10.1016/0031-9384(84)90248-8
Eban-Rothschild A, Rothschild G, Giardino WJ, Jones JR, de Lecea L (2016) VTA dopaminergic neurons regulate ethologically relevant sleep-wake behaviors. Nat Neurosci 19(10):1356–1366. https://doi.org/10.1038/nn.4377
Ehlen JC, Brager AJ, Baggs J, Pinckney L, Gray CL, DeBruyne JP, Esser KA, Takahashi JS, Paul KN (2017) Bmal1 function in skeletal muscle regulates sleep. elife 6:e26557. https://doi.org/10.7554/eLife.26557
Espana RA, Plahn S, Berridge CW (2002) Circadian-dependent and circadian-independent behavioral actions of hypocretin/orexin. Brain Res 943(2):224–236. https://doi.org/10.1016/s0006-8993(02)02653-7
Fifel K, Meijer JH, Deboer T (2018) Circadian and homeostatic modulation of multi-unit activity in midbrain dopaminergic structures. Sci Rep 8(1):7765. https://doi.org/10.1038/s41598-018-25770-5
Foster RG, Hughes S, Peirson SN (2020) Circadian Photoentrainment in mice and humans. Biology (Basel) 9(7):180. https://doi.org/10.3390/biology9070180
Franken P (2013) A role for clock genes in sleep homeostasis. Curr Opin Neurobiol 23(5):864–872. https://doi.org/10.1016/j.conb.2013.05.002
Franken P, Dijk DJ (2009) Circadian clock genes and sleep homeostasis. Eur J Neurosci 29(9):1820–1829. https://doi.org/10.1111/j.1460-9568.2009.06723.x
Gamble KL, Silver R (2020) Circadian rhythmicity and the community of clockworkers. Eur J Neurosci 51(12):2314–2328. https://doi.org/10.1111/ejn.14626
Gelegen C, Miracca G, Ran MZ, Harding EC, Ye Z, Yu X, Tossell K, Houston CM, Yustos R, Hawkins ED, Vyssotski AL, Dong HL, Wisden W, Franks NP (2018) Excitatory pathways from the lateral Habenula enable Propofol-induced sedation. Curr Biol 28(4):580–587. e585. https://doi.org/10.1016/j.cub.2017.12.050
Gizowski C, Bourque CW (2018) The neural basis of homeostatic and anticipatory thirst. Nat Rev Nephrol 14(1):11–25. https://doi.org/10.1038/nrneph.2017.149
Gizowski C, Zaelzer C, Bourque CW (2016) Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature 537(7622):685–688. https://doi.org/10.1038/nature19756
Gold AK, Sylvia LG (2016) The role of sleep in bipolar disorder. Nat Sci Sleep 8:207–214. https://doi.org/10.2147/NSS.S85754
Guilding C, Piggins HD (2007) Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 25(11):3195–3216. https://doi.org/10.1111/j.1460-9568.2007.05581.x
Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4(2):121–130. https://doi.org/10.1038/nrn1034
Harding EC, Yu X, Miao A, Andrews N, Ma Y, Ye Z, Lignos L, Miracca G, Ba W, Yustos R, Vyssotski AL, Wisden W, Franks NP (2018) A neuronal hub binding sleep initiation and body cooling in response to a warm external stimulus. Curr Biol 28(14):2263–2273. e2264. https://doi.org/10.1016/j.cub.2018.05.054
Harrison PJ, Geddes JR, Tunbridge EM (2018) The emerging neurobiology of bipolar disorder. Trends Neurosci 41(1):18–30. https://doi.org/10.1016/j.tins.2017.10.006
Hastings MH, Maywood ES, Brancaccio M (2018) Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci 19(8):453–469. https://doi.org/10.1038/s41583-018-0026-z
He Y, Jones CR, Fujiki N, Xu Y, Guo B, Holder JL Jr, Rossner MJ, Nishino S, Fu YH (2009) The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325(5942):866–870. https://doi.org/10.1126/science.1174443
Herrera CG, Cadavieco MC, Jego S, Ponomarenko A, Korotkova T, Adamantidis A (2016) Hypothalamic feedforward inhibition of thalamocortical network controls arousal and consciousness. Nat Neurosci 19(2):290–298. https://doi.org/10.1038/nn.4209
Hirano A, Hsu PK, Zhang L, Xing L, McMahon T, Yamazaki M, Ptacek LJ, Fu YH (2018) DEC2 modulates orexin expression and regulates sleep. Proc Natl Acad Sci U S A 115(13):3434–3439. https://doi.org/10.1073/pnas.1801693115
Jan M, O’Hara BF, Franken P (2020) Recent advances in understanding the genetics of sleep. F1000Res 9:F1000. https://doi.org/10.12688/f1000research.22028.1
Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ, Boyce R, Friedman J, Burdakov D, Adamantidis AR (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16(11):1637–1643. https://doi.org/10.1038/nn.3522
Jones BE (2020) Arousal and sleep circuits. Neuropsychopharmacology 45(1):6–20. https://doi.org/10.1038/s41386-019-0444-2
Jones JR, Simon T, Lones L, Herzog ED (2018) SCN VIP neurons are essential for Normal light-mediated resetting of the circadian system. J Neurosci 38(37):7986–7995. https://doi.org/10.1523/JNEUROSCI.1322-18.2018
Kim YS, Kim YB, Kim WB, Yoon BE, Shen FY, Lee SW, Soong TW, Han HC, Colwell CS, Lee CJ, Kim YI (2015) Histamine resets the circadian clock in the suprachiasmatic nucleus through the H1R-CaV 1.3-RyR pathway in the mouse. Eur J Neurosci 42(7):2467–2477. https://doi.org/10.1111/ejn.13030
Kim YS, Kim YB, Kim WB, Lee SW, Oh SB, Han HC, Lee CJ, Colwell CS, Kim YI (2016) Histamine 1 receptor-Gbetagamma-cAMP/PKA-CFTR pathway mediates the histamine-induced resetting of the suprachiasmatic circadian clock. Mol Brain 9(1):49. https://doi.org/10.1186/s13041-016-0227-1
Kim J, Jang S, Choe HK, Chung S, Son GH, Kim K (2017) Implications of circadian rhythm in dopamine and mood regulation. Mol Cells 40(7):450–456. https://doi.org/10.14348/molcells.2017.0065
Koike N, Yoo SH, Huang HC, Kumar V, Lee C, Kim TK, Takahashi JS (2012) Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 338(6105):349–354. https://doi.org/10.1126/science.1226339
Kyriacou CP, Hastings MH (2010) Circadian clocks: genes, sleep, and cognition. Trends Cogn Sci 14(6):259–267. https://doi.org/10.1016/j.tics.2010.03.007
Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28(4):395–409. https://doi.org/10.1093/sleep/28.4.395
Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25(28):6716–6720. https://doi.org/10.1523/JNEUROSCI.1887-05.2005
Lee IT, Chang AS, Manandhar M, Shan Y, Fan J, Izumo M, Ikeda Y, Motoike T, Dixon S, Seinfeld JE, Takahashi JS, Yanagisawa M (2015) Neuromedin s-producing neurons act as essential pacemakers in the suprachiasmatic nucleus to couple clock neurons and dictate circadian rhythms. Neuron 85(5):1086–1102. https://doi.org/10.1016/j.neuron.2015.02.006
Li SB, de Lecea L (2020) The hypocretin (orexin) system: from a neural circuitry perspective. Neuropharmacology 167:107993. https://doi.org/10.1016/j.neuropharm.2020.107993
Liu D, Dan Y (2019) A motor theory of sleep-wake control: arousal-action circuit. Annu Rev Neurosci 42:27–46. https://doi.org/10.1146/annurev-neuro-080317-061813
Logan RW, McClung CA (2016) Animal models of bipolar mania: the past, present and future. Neuroscience 321:163–188. https://doi.org/10.1016/j.neuroscience.2015.08.041
Logan RW, McClung CA (2019) Rhythms of life: circadian disruption and brain disorders across the lifespan. Nat Rev Neurosci 20(1):49–65. https://doi.org/10.1038/s41583-018-0088-y
Ma Y, Miracca G, Yu X, Harding EC, Miao A, Yustos R, Vyssotski AL, Franks NP, Wisden W (2019) Galanin neurons unite sleep homeostasis and alpha2-adrenergic sedation. Curr Biol 29(19):3315–3322. e3313. https://doi.org/10.1016/j.cub.2019.07.087
Mang GM, La Spada F, Emmenegger Y, Chappuis S, Ripperger JA, Albrecht U, Franken P (2016) Altered sleep homeostasis in rev-erbalpha knockout mice. Sleep 39(3):589–601. https://doi.org/10.5665/sleep.5534
McClung CA, Sidiropoulou K, Vitaterna M, Takahashi JS, White FJ, Cooper DC, Nestler EJ (2005) Regulation of dopaminergic transmission and cocaine reward by the clock gene. Proc Natl Acad Sci U S A 102(26):9377–9381. https://doi.org/10.1073/pnas.0503584102
McGregor R, Shan L, Wu MF, Siegel JM (2017) Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: implication for understanding and treating neuronal loss. PLoS One 12(6):e0178573. https://doi.org/10.1371/journal.pone.0178573
Michel S, Meijer JH (2020) From clock to functional pacemaker. Eur J Neurosci 51(1):482–493. https://doi.org/10.1111/ejn.14388
Michelsen KA, Lozada A, Kaslin J, Karlstedt K, Kukko-Lukjanov TK, Holopainen I, Ohtsu H, Panula P (2005) Histamine-immunoreactive neurons in the mouse and rat suprachiasmatic nucleus. Eur J Neurosci 22(8):1997–2004. https://doi.org/10.1111/j.1460-9568.2005.04387.x
Mistlberger RE (2005) Circadian regulation of sleep in mammals: role of the suprachiasmatic nucleus. Brain Res Brain Res Rev 49(3):429–454. https://doi.org/10.1016/j.brainresrev.2005.01.005
Mistlberger RE (2020) Food as circadian time cue for appetitive behavior. F1000Res 9:F1000. https://doi.org/10.12688/f1000research.20829.1
Mistlberger RE, Bergmann BM, Waldenar W, Rechtschaffen A (1983) Recovery sleep following sleep deprivation in intact and suprachiasmatic nuclei-lesioned rats. Sleep 6(3):217–233. https://doi.org/10.1093/sleep/6.3.217
Mongrain V, La Spada F, Curie T, Franken P (2011) Sleep loss reduces the DNA-binding of BMAL1, CLOCK, and NPAS2 to specific clock genes in the mouse cerebral cortex. PLoS One 6(10):e26622. https://doi.org/10.1371/journal.pone.0026622
Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42(1):201–206. https://doi.org/10.1016/0006-8993(72)90054-6
Moore RY, Speh JC (1993) GABA is the principal neurotransmitter of the circadian system. Neurosci Lett 150(1):112–116. https://doi.org/10.1016/0304-3940(93)90120-a
Muto V, Jaspar M, Meyer C, Kusse C, Chellappa SL, Degueldre C, Balteau E, Shaffii-Le Bourdiec A, Luxen A, Middleton B, Archer SN, Phillips C, Collette F, Vandewalle G, Dijk DJ, Maquet P (2016) Local modulation of human brain responses by circadian rhythmicity and sleep debt. Science 353(6300):687–690. https://doi.org/10.1126/science.aad2993
Oishi Y, Xu Q, Wang L, Zhang BJ, Takahashi K, Takata Y, Luo YJ, Cherasse Y, Schiffmann SN, de Kerchove d’Exaerde A, Urade Y, Qu WM, Huang ZL, Lazarus M (2017) Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nat Commun 8(1):734. https://doi.org/10.1038/s41467-017-00781-4
Okamura H, Berod A, Julien JF, Geffard M, Kitahama K, Mallet J, Bobillier P (1989) Demonstration of GABAergic cell bodies in the suprachiasmatic nucleus: in situ hybridization of glutamic acid decarboxylase (GAD) mRNA and immunocytochemistry of GAD and GABA. Neurosci Lett 102(2–3):131–136. https://doi.org/10.1016/0304-3940(89)90067-0
Ono D, Mukai Y, Hung CJ, Chowdhury S, Sugiyama T, Yamanaka A (2020) The mammalian circadian pacemaker regulates wakefulness via CRF neurons in the paraventricular nucleus of the hypothalamus. Sci Adv 6(45):eabd0384. https://doi.org/10.1126/sciadv.abd0384
Panula P, Pirvola U, Auvinen S, Airaksinen MS (1989) Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience 28(3):585–610. https://doi.org/10.1016/0306-4522(89)90007-9
Parmentier R, Ohtsu H, Djebbara-Hannas Z, Valatx JL, Watanabe T, Lin JS (2002) Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 22(17):7695–7711
Patke A, Murphy PJ, Onat OE, Krieger AC, Ozcelik T, Campbell SS, Young MW (2017) Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder. Cell 169(2):203–215. e213. https://doi.org/10.1016/j.cell.2017.03.027
Patke A, Young MW, Axelrod S (2020) Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 21(2):67–84. https://doi.org/10.1038/s41580-019-0179-2
Patton AP, Hastings MH (2018) The suprachiasmatic nucleus. Curr Biol 28(15):R816–R822. https://doi.org/10.1016/j.cub.2018.06.052
Paul JR, Davis JA, Goode LK, Becker BK, Fusilier A, Meador-Woodruff A, Gamble KL (2020) Circadian regulation of membrane physiology in neural oscillators throughout the brain. Eur J Neurosci 51(1):109–138. https://doi.org/10.1111/ejn.14343
Peever J, Fuller PM (2016) Neuroscience: a distributed neural network controls REM sleep. Curr Biol 26(1):R34–R35. https://doi.org/10.1016/j.cub.2015.11.011
Peever J, Fuller PM (2017) The biology of REM sleep. Curr Biol 27(22):R1237–R1248. https://doi.org/10.1016/j.cub.2017.10.026
Qiu P, Jiang J, Liu Z, Cai Y, Huang T, Wang Y, Liu Q, Nie Y, Liu F, Cheng J, Li Q, Tang Y-C, Poo M, Sun Q, Chang H-C (2019) BMAL1 knockout macque monkeys display reduced sleep and psychiatric disorders. Natl Sci Rev 6:87–100. https://doi.org/10.1093/nsr/nwz002
Reichert S, Pavon Arocas O, Rihel J (2019) The neuropeptide Galanin is required for homeostatic rebound sleep following increased neuronal activity. Neuron 104(2):370–384. e375. https://doi.org/10.1016/j.neuron.2019.08.010
Rijo-Ferreira F, Takahashi JS (2019) Genomics of circadian rhythms in health and disease. Genome Med 11(1):82. https://doi.org/10.1186/s13073-019-0704-0
Rossner MJ, Oster H, Wichert SP, Reinecke L, Wehr MC, Reinecke J, Eichele G, Taneja R, Nave KA (2008) Disturbed clockwork resetting in Sharp-1 and Sharp-2 single and double mutant mice. PLoS One 3(7):e2762. https://doi.org/10.1371/journal.pone.0002762
Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, Chakravarty S, Peevey J, Oehrlein N, Birnbaum S, Vitaterna MH, Orsulak P, Takahashi JS, Nestler EJ, Carlezon WA Jr, McClung CA (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci U S A 104(15):6406–6411. https://doi.org/10.1073/pnas.0609625104
Rozov SV, Porkka-Heiskanen T, Panula P (2015) On the role of histamine receptors in the regulation of circadian rhythms. PLoS One 10(12):e0144694. https://doi.org/10.1371/journal.pone.0144694
Rusak B, Robertson HA, Wisden W, Hunt SP (1990) Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248(4960):1237–1240. https://doi.org/10.1126/science.2112267
Sakai K (2014) Single unit activity of the suprachiasmatic nucleus and surrounding neurons during the wake-sleep cycle in mice. Neuroscience 260:249–264. https://doi.org/10.1016/j.neuroscience.2013.12.020
Sakai K, Takahashi K, Anaclet C, Lin JS (2010) Sleep-waking discharge of ventral tuberomammillary neurons in wild-type and histidine decarboxylase knock-out mice. Front Behav Neurosci 4:53. https://doi.org/10.3389/fnbeh.2010.00053
Sakhi K, Wegner S, Belle MD, Howarth M, Delagrange P, Brown TM, Piggins HD (2014) Intrinsic and extrinsic cues regulate the daily profile of mouse lateral habenula neuronal activity. J Physiol 592(22):5025–5045. https://doi.org/10.1113/jphysiol.2014.280065
Scammell TE, Arrigoni E, Lipton JO (2017) Neural circuitry of wakefulness and sleep. Neuron 93(4):747–765. https://doi.org/10.1016/j.neuron.2017.01.014
Scammell TE, Jackson AC, Franks NP, Wisden W, Dauvilliers Y (2019) Histamine: neural circuits and new medications. Sleep 42(1):zsy183. https://doi.org/10.1093/sleep/zsy183
Shan L, Hofman MA, van Wamelen DJ, Van Someren EJ, Bao AM, Swaab Dick F (2012) Diurnal fluctuation in histidine decarboxylase expression, the rate limiting enzyme for histamine production, and its disorder in neurodegenerative diseases. Sleep 35(5):713–715. https://doi.org/10.5665/sleep.1838
Siwicki KK, Hardin PE, Price JL (2018) Reflections on contributing to “big discoveries” about the fly clock: our fortunate paths as post-docs with 2017 Nobel laureates Jeff hall, Michael Rosbash, and Mike Young. Neurobiol Sleep Circadian Rhythms 5:58–67. https://doi.org/10.1016/j.nbscr.2018.02.004
Soya S, Sakurai T (2020) Evolution of orexin neuropeptide system: structure and function. Front Neurosci 14:691. https://doi.org/10.3389/fnins.2020.00691
Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69(6):1583–1586. https://doi.org/10.1073/pnas.69.6.1583
Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18(3):164–179. https://doi.org/10.1038/nrg.2016.150
Tobler I, Borbely AA, Groos G (1983) The effect of sleep deprivation on sleep in rats with suprachiasmatic lesions. Neurosci Lett 42(1):49–54. https://doi.org/10.1016/0304-3940(83)90420-2
Todd WD, Fenselau H, Wang JL, Zhang R, Machado NL, Venner A, Broadhurst RY, Kaur S, Lynagh T, Olson DP, Lowell BB, Fuller PM, Saper CB (2018) A hypothalamic circuit for the circadian control of aggression. Nat Neurosci 21(5):717–724. https://doi.org/10.1038/s41593-018-0126-0
Todd WD, Venner A, Anaclet C, Broadhurst RY, De Luca R, Bandaru SS, Issokson L, Hablitz LM, Cravetchi O, Arrigoni E, Campbell JN, Allen CN, Olson DP, Fuller PM (2020) Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nat Commun 11(1):4410. https://doi.org/10.1038/s41467-020-17197-2
Venner A, Anaclet C, Broadhurst RY, Saper CB, Fuller PM (2016) A novel population of wake-promoting GABAergic neurons in the ventral lateral hypothalamus. Curr Biol 26(16):2137–2143. https://doi.org/10.1016/j.cub.2016.05.078
Walker WH 2nd, Walton JC, DeVries AC, Nelson RJ (2020) Circadian rhythm disruption and mental health. Transl Psychiatry 10(1):28. https://doi.org/10.1038/s41398-020-0694-0
Wang Z, Ma J, Miyoshi C, Li Y, Sato M, Ogawa Y, Lou T, Ma C, Gao X, Lee C, Fujiyama T, Yang X, Zhou S, Hotta-Hirashima N, Klewe-Nebenius D, Ikkyu A, Kakizaki M, Kanno S, Cao L, Takahashi S, Peng J, Yu Y, Funato H, Yanagisawa M, Liu Q (2018) Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 558(7710):435–439. https://doi.org/10.1038/s41586-018-0218-8
Webb IC, Baltazar RM, Wang X, Pitchers KK, Coolen LM, Lehman MN (2009) Diurnal variations in natural and drug reward, mesolimbic tyrosine hydroxylase, and clock gene expression in the male rat. J Biol Rhythm 24(6):465–476. https://doi.org/10.1177/0748730409346657
Weber M, Lauterburg T, Tobler I, Burgunder JM (2004) Circadian patterns of neurotransmitter related gene expression in motor regions of the rat brain. Neurosci Lett 358(1):17–20. https://doi.org/10.1016/j.neulet.2003.12.053
Weber F, Chung S, Beier KT, Xu M, Luo L, Dan Y (2015) Control of REM sleep by ventral medulla GABAergic neurons. Nature 526(7573):435–438. https://doi.org/10.1038/nature14979
Wisor JP, O’Hara BF, Terao A, Selby CP, Kilduff TS, Sancar A, Edgar DM, Franken P (2002) A role for cryptochromes in sleep regulation. BMC Neurosci 3:20. https://doi.org/10.1186/1471-2202-3-20
Wulff K, Gatti S, Wettstein JG, Foster RG (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 11(8):589–599. https://doi.org/10.1038/nrn2868
Wurts SW, Edgar DM (2000) Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus. J Neurosci 20(11):4300–4310
Yamashita T, Yamanaka A (2017) Lateral hypothalamic circuits for sleep-wake control. Curr Opin Neurobiol 44:94–100. https://doi.org/10.1016/j.conb.2017.03.020
Yu X, Zecharia A, Zhang Z, Yang Q, Yustos R, Jager P, Vyssotski AL, Maywood ES, Chesham JE, Ma Y, Brickley SG, Hastings MH, Franks NP, Wisden W (2014) Circadian factor BMAL1 in histaminergic neurons regulates sleep architecture. Curr Biol 24(23):2838–2844. https://doi.org/10.1016/j.cub.2014.10.019
Yu X, Li W, Ma Y, Tossell K, Harris JJ, Harding EC, Ba W, Miracca G, Wang D, Li L, Guo J, Chen M, Li Y, Yustos R, Vyssotski AL, Burdakov D, Yang Q, Dong H, Franks NP, Wisden W (2019a) GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci 22(1):106–119. https://doi.org/10.1038/s41593-018-0288-9
Yu X, Ma Y, Harding EC, Yustos R, Vyssotski AL, Franks NP, Wisden W (2019b) Genetic lesioning of histamine neurons increases sleep-wake fragmentation and reveals their contribution to modafinil-induced wakefulness. Sleep 42(5):zsz031. https://doi.org/10.1093/sleep/zsz031
Yu X, Ba W, Zhao G, Ma Y, Harding EC, Yin L, Wang D, Li H, Zhang P, Shi Y, Yustos R, Vyssotski AL, Dong H, Franks NP, Wisden W (2020) Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Mol Psychiatry. https://doi.org/10.1038/s41380-020-0810-9
Zhang L, Fu YH (2020) The molecular genetics of human sleep. Eur J Neurosci 51(1):422–428. https://doi.org/10.1111/ejn.14132
Zhang C, Truong KK, Zhou QY (2009) Efferent projections of prokineticin 2 expressing neurons in the mouse suprachiasmatic nucleus. PLoS One 4(9):e7151. https://doi.org/10.1371/journal.pone.0007151
Zhang Z, Ferretti V, Guntan I, Moro A, Steinberg EA, Ye Z, Zecharia AY, Yu X, Vyssotski AL, Brickley SG, Yustos R, Pillidge ZE, Harding EC, Wisden W, Franks NP (2015) Neuronal ensembles sufficient for recovery sleep and the sedative actions of alpha2 adrenergic agonists. Nat Neurosci 18(4):553–561. https://doi.org/10.1038/nn.3957
Zhang L, Hirano A, Hsu PK, Jones CR, Sakai N, Okuro M, McMahon T, Yamazaki M, Xu Y, Saigoh N, Saigoh K, Lin ST, Kaasik K, Nishino S, Ptacek LJ, Fu YH (2016) A PERIOD3 variant causes a circadian phenotype and is associated with a seasonal mood trait. Proc Natl Acad Sci U S A 113(11):E1536–E1544. https://doi.org/10.1073/pnas.1600039113
Zhang Z, Zhong P, Hu F, Barger Z, Ren Y, Ding X, Li S, Weber F, Chung S, Palmiter RD, Dan Y (2019) An excitatory circuit in the Perioculomotor midbrain for non-REM sleep control. Cell 177(5):1293–1307. e1216. https://doi.org/10.1016/j.cell.2019.03.041
Zhong P, Zhang Z, Barger Z, Ma C, Liu D, Ding X, Dan Y (2019) Control of non-REM sleep by midbrain Neurotensinergic neurons. Neuron 104(4):795–809. e796. https://doi.org/10.1016/j.neuron.2019.08.026
Acknowledgments
Our work was supported by the Wellcome Trust (107839/Z/15/Z, NPF and 107841/Z/15/Z, WW) and the the UK Dementia Research Institute (WW and NPF).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Yu, X., Franks, N.P., Wisden, W. (2021). Brain Clocks, Sleep, and Mood. In: Engmann, O., Brancaccio, M. (eds) Circadian Clock in Brain Health and Disease. Advances in Experimental Medicine and Biology, vol 1344. Springer, Cham. https://doi.org/10.1007/978-3-030-81147-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-81147-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81146-4
Online ISBN: 978-3-030-81147-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)