Abstract
A molecular circadian clock exists not only in the brain, but also in most cells of the body. Research over the past two decades has demonstrated that it directs daily rhythmicity of nearly every aspect of metabolism. It also consolidates sleep-wake behavior each day into an activity/feeding period and a sleep/fasting period. Otherwise, sleep-wake states are mostly controlled by hypothalamic and thalamic regulatory circuits in the brain that direct overall brain state. Recent evidence suggests that hypothalamic control of appetite and metabolism may be concomitant with sleep-wake regulation, and even share the same control centers. Thus, circadian control of metabolic pathways might be overlaid by sleep-wake control of the same pathways, providing a flexible and redundant system to modify metabolism according to both activity and environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aalling NN, Nedergaard M, DiNuzzo M (2018) Cerebral metabolic changes during sleep. Curr Neurol Neurosci Rep 18(9):57
Akerstedt T (1990) Psychological and psychophysiological effects of shift work. Scand J Work Environ Health. 16(Suppl 1):67–73
Albrecht U (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 74(2):246–260
Albrecht U, Eichele G (2003) The mammalian circadian clock. Curr Opin Genet Dev. 13(3):271–277
Allebrandt KV, Amin N, Müller-Myhsok B, Esko T, Teder-Laving M, Azevedo RVDM et al (2013) A KATP channel gene effect on sleep duration: from genome-wide association studies to function in Drosophila. Mol Psychiatry. 18(1):122–132
Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A (2016) Sleep disturbances compared to traditional risk factors for diabetes development: systematic review and meta-analysis. Sleep Med Rev. 30:11–24
Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW (2009) Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring). 17(11):2100–2102
Arendt J (2010) Shift work: coping with the biological clock. Occup Med (Lond). 60(1):10–20
Asarnow LD, Soehner AM, Harvey AG (2013) Circadian rhythms and psychiatric illness. Curr Opin Psychiatry. 26(6):566–571
Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F et al (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 134(2):317–328
Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell. 142(6):943–953
Aviram R, Manella G, Kopelman N, Neufeld-Cohen A, Zwighaft Z, Elimelech M et al (2016) Lipidomics analyses reveal temporal and spatial lipid organization and uncover daily oscillations in intracellular organelles. Mol Cell. 62(4):636–648
Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 93(6):929–937
Barone MTU, Menna-Barreto L (2011) Diabetes and sleep: a complex cause-and-effect relationship. Diabetes Res Clin Pract 91(2):129–137
Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science. 330(6009):1349–1354
Beccuti G, Monagheddu C, Evangelista A, Ciccone G, Broglio F, Soldati L et al (2017) Timing of food intake: Sounding the alarm about metabolic impairments? A systematic review. Pharmacol Res 125(Pt B):132–141
Benegiamo G, Mure LS, Erikson G, Le HD, Moriggi E, Brown SA et al (2018) The RNA-binding protein NONO coordinates hepatic adaptation to feeding. Cell Metab 27(2):404–418
Berger RJ, Phillips NH (1995) Energy conservation and sleep. Behav Brain Res 69(1):65–73
Berridge CW, Schmeichel BE, España RA (2012) Noradrenergic modulation of wakefulness/arousal. Sleep Med Rev 16(2):187–197
Besedovsky L, Lange T, Born J (2011) Sleep and immune function. Pflügers Archiv—Eur J Physiol 463(1):121–137
Borbély AA (1982) A two process model of sleep regulation. Hum Neurobiol 1(3):195–204
Borbély AA, Daan S, Wirz-Justice A, Deboer T (2016) The two-process model of sleep regulation: a reappraisal. J Sleep Res 25(2):131–143
Boyle PJ, Scott JC, Krentz AJ, Nagy RJ, Comstock E, Hoffman C (1994) Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans. J Clin Invest 93(2):529–535
Brebbia DR, Altshuler KZ (1965) Oxygen consumption rate and electroencephalographic stage of sleep. Science 150(3703):1621–1623
Brestoff JR, Artis D (2015) Immune regulation of metabolic homeostasis in health and disease. Cell. 161(1):146–160
Brown SA (2016) Circadian metabolism: from mechanisms to metabolomics and medicine. Trends Endocrinol Metab. 27(6):415–426
Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol. 12(18):1574–1583
Brum MC, Filho FF, Schnorr CC, Bottega GB, Rodrigues TC (2015) Shift work and its association with metabolic disorders. Diabetol Metab Syndr. 7:45
Bruning F, Noya SB, Bange T, Koutsouli S, Rudolph JD, Tyagarajan SK et al (2019a) Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science 366(6462):eaav3617
Bruning F, Noya SB, Bange T, Koutsouli S, Rudolph JD, Tyagarajan S et al (2019b) Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science 366(6462):201
Buijs RM, Kalsbeek A (2001) Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci. 2(7):521–526
Burdakov D, Jensen LT, Alexopoulos H, Williams RH, Fearon IM, O’Kelly I et al (2006) Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron. 50(5):711–722
Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK (2010) Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes. 59(9):2126
Cappuccio FP, Taggart FM, Kandala NB, Currie A, Peile E, Stranges S et al (2008) Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 31(5):619–626
Cappuccio FP, Elia L, Strazzullo P, Miller MA (2010) Quantity and quality of sleep and incidence of type 2 diabetes. Diabetes Care. 33(2):414
Carroll CM, Macauley SL (2019) The interaction between sleep and metabolism in Alzheimer’s disease: cause or consequence of disease? Front Aging Neurosci 11:258
Carter R, Watenpaugh DE (2008) Obesity and obstructive sleep apnea: or is it OSA and obesity? Pathophysiology. 15(2):71–77
Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL et al (2010) Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol. 185(10):5796–5805
Cedernaes J, Huang W, Ramsey KM, Waldeck N, Cheng L, Marcheva B et al (2019a) Transcriptional basis for rhythmic control of hunger and metabolism within the AgRP neuron. Cell Metab. 29(5):1078–1091. e5
Cedernaes J, Waldeck N, Bass J (2019b) Neurogenetic basis for circadian regulation of metabolism by the hypothalamus. Genes Dev. 33(17-18):1136–1158
Cederroth CR, Albrecht U, Bass J, Brown SA, Dyhrfjeld-Johnsen J, Gachon F et al (2019) Medicine in the fourth dimension. Cell Metab. 30(2):238–250
Chen K-S, Xu M, Zhang Z, Chang W-C, Gaj T, Schaffer DV et al (2018) A hypothalamic switch for REM and non-REM sleep. Neuron 97(5):1168–76.e4
Chikahisa S, Séi H (2011) The role of ATP in sleep regulation. Front Neurol 2:87
Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron. 41(1):35–43
Codoñer-Franch P, Gombert M (2018) Circadian rhythms in the pathogenesis of gastrointestinal diseases. World J Gastroenterol. 24(38):4297–4303
Coomans CP, Lucassen EA, Kooijman S, Fifel K, Deboer T, Rensen PC et al (2015) Plasticity of circadian clocks and consequences for metabolism. Diabetes Obes Metab. 17(Suppl 1):65–75
Crunelli V, Hughes SW (2010) The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci. 13(1):9–17
Dagan Y, Ayalon L (2005) Case study: psychiatric misdiagnosis of non-24-hours sleep-wake schedule disorder resolved by melatonin. J Am Acad Child Adolesc Psychiatry 44(12):1271–1275
Dahmen N, Bierbrauer J, Kasten M (2001) Increased prevalence of obesity in narcoleptic patients and relatives. Eur Arch Psychiatry Clin Neurosci 251(2):85–89
Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14(23):2950–2961
Dauvilliers Y, Rompré S, Gagnon J-F, Vendette M, Petit D, Montplaisir J (2007) REM sleep characteristics in narcolepsy and REM sleep behavior disorder. Sleep. 30(7):844–849
Depner CM, Melanson EL, Eckel RH, Snell-Bergeon JK, Perreault L, Bergman BC et al (2019) Ad libitum weekend recovery sleep fails to prevent metabolic dysregulation during a repeating pattern of insufficient sleep and weekend recovery sleep. Curr Biol. 29(6):957–967. e4
Dienel GA, Cruz NF (2016) Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J Neurochemistry. 138(1):14–52
Diering GH, Nirujogi RS, Roth RH, Worley PF, Pandey A, Huganir RL (2017) Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science. 355(6324):511–515
DiNuzzo M, Nedergaard M (2017) Brain energetics during the sleep–wake cycle. Curr Opin Neurobiol 47:65–72
Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A. 109(14):5541–5546
Elgar MA, Pagel MD, Harvey PH (1988) Sleep in mammals. Anim Behav 36(5):1407–1419
Espitia-Bautista E, Velasco-Ramos M, Osnaya-Ramírez I, Ángeles-Castellanos M, Buijs RM, Escobar C (2017) Social jet-lag potentiates obesity and metabolic syndrome when combined with cafeteria diet in rats. Metabolism. 72:83–93
Everson CA, Toth LA (2000) Systemic bacterial invasion induced by sleep deprivation. Am J Physiol Regul Integr Comp Physiol 278(4):R905–RR16
Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T et al (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science. 331(6022):1315–1319
Fontvieille AM, Rising R, Spraul M, Larson DE, Ravussin E (1994) Relationship between sleep stages and metabolic rate in humans. Am J Physiol Endocrinol Metab 267(5):E732–E737. https://doi.org/10.1152/ajpendo19942675E732
Foster GD, Sanders MH, Millman R, Zammit G, Borradaile KE, Newman AB et al (2009) Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care. 32(6):1017
Gabelle A, Jaussent I, Hirtz C, Vialaret J, Navucet S, Grasselli C et al (2017) Cerebrospinal fluid levels of orexin-A and histamine, and sleep profile within the Alzheimer process. Neurobiology of Aging. 53:59–66
Gale SM, Castracane VD, Mantzoros CS (2004) Energy homeostasis, obesity and eating disorders: recent advances in endocrinology. J Nutr 134(2):295–298
Gómez-González B, Domínguez-Salazar E, Hurtado-Alvarado G, Esqueda-Leon E, Santana-Miranda R, Rojas-Zamorano JA et al (2012) Role of sleep in the regulation of the immune system and the pituitary hormones. Annals New York Acad Sci 1261(1):97–106
Gorgoni M, D’Atri A, Lauri G, Rossini PM, Ferlazzo F, De Gennaro L (2013) Is sleep essential for neural plasticity in humans, and how does it affect motor and cognitive recovery? Neural Plast 2013:13
Greene MW (2012) Circadian rhythms and tumor growth. Cancer Lett. 318(2):115–123
Greenwell BJ, Trott AJ, Beytebiere JR, Pao S, Bosley A, Beach E et al (2019) Rhythmic food intake drives rhythmic gene expression more potently than the hepatic circadian clock in mice. Cell Rep 27(3):649–57.e5
Harsch IA, Konturek PC, Koebnick C, Kuehnlein PP, Fuchs FS, Pour Schahin S et al (2003) Leptin and ghrelin levels in patients with obstructive sleep apnoea: effect of CPAP treatment. Eur Respirat J 22(2):251
Haskell EH, Palca JW, Walker JM, Berger RJ, Heller HC (1981) Metabolism and thermoregulation during stages of sleep in humans exposed to heat and cold. J Appl Phys 51(4):948–954. https://doi.org/10.1152/jappl1981514948
Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S et al (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15(6):848–860
Hecht L, Möhler R, Meyer G (2011) Effects of CPAP-respiration on markers of glucose metabolism in patients with obstructive sleep apnoea syndrome: a systematic review and meta-analysis. Ger Med Sci 9:Doc20-Doc
Holingue C, Wennberg A, Berger S, Polotsky VY, Spira AP (2018) Disturbed sleep and diabetes: a potential nexus of dementia risk. Metabolism. 84:85–93
Hor CN, Yeung J, Jan M, Emmenegger Y, Hubbard J, Xenarios I et al (2019) Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex. Proc Natl Acad Sci U S A. 116(51):25773–25783
Hsuchou H, Wang Y, Cornelissen-Guillaume GG, Kastin AJ, Jang E, Halberg F et al (2013) Diminished leptin signaling can alter circadian rhythm of metabolic activity and feeding. J Appl Physiol (1985) 115(7):995–1003
Imeri L, Opp MR (2009) How (and why) the immune system makes us sleep. Nature Rev Neurosci 10(3):199–210
Jordan SD, Lamia KA (2013) AMPK at the crossroads of circadian clocks and metabolism. Mol Cell Endocrinol. 366(2):163–169
Jung CM, Melanson EL, Frydendall EJ, Perreault L, Eckel RH, Wright KP (2011) Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol 589(1):235–244
Kalia M (2006) Neurobiology of sleep. Metabolism. 55:S2–S6
Kalsbeek A, Fliers E (2013) Daily regulation of hormone profiles. Handb Exp Pharmacol. 217:185–226
Kayaba M, Park I, Iwayama K, Seya Y, Ogata H, Yajima K et al (2017) Energy metabolism differs between sleep stages and begins to increase prior to awakening. Metabolism. 69:14–23
Kelly RM, Healy U, Sreenan S, McDermott JH, Coogan AN (2018) Clocks in the clinic: circadian rhythms in health and disease. Postgrad Med J. 94(1117):653–658
Kervezee L, Cermakian N, Boivin DB (2019) Individual metabolomic signatures of circadian misalignment during simulated night shifts in humans. PLoS Biol. 17(6):e3000303
Kil IS, Ryu KW, Lee SK, Kim JY, Chu SY, Kim JH et al (2015) Circadian oscillation of sulfiredoxin in the mitochondria. Mol Cell. 59(4):651–663
Kim MJ, Lee JH, Duffy JF (2013) Circadian rhythm sleep disorders. J Clin Outcomes Manag. 20(11):513–528
Knutson KL (2007) Impact of sleep and sleep loss on glucose homeostasis and appetite regulation. Sleep Med Clin. 2(2):187–197
Knutson KL, von Schantz M (2018) Associations between chronotype, morbidity and mortality in the UK Biobank cohort. Chronobiol Int. 35(8):1045–1053
Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y et al (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6(5):414–421
Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 402(6762):656–660
Korenčič A, Košir R, Bordyugov G, Lehmann R, Rozman D, Herzel H (2014) Timing of circadian genes in mammalian tissues. Sci Rep. 4:5782
Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW et al (2011) Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature. 480(7378):552–556
Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep. 28(4):395–409
Laposky AD, Shelton J, Bass J, Dugovic C, Perrino N, Turek FW (2006) Altered sleep regulation in leptin-deficient mice. Am J Physiol Regul Integr Comp Phys 290(4):R894–R903
Latta F, Leproult R, Tasali E, Hofmann E, L’Hermite-Balériaux M, Copinschi G et al (2005) Sex differences in nocturnal growth hormone and prolactin secretion in healthy older adults: relationships with sleep EEG variables. Sleep. 28(12):1519–1524
Lee Y, Kim EK (2013) AMP-activated protein kinase as a key molecular link between metabolism and clockwork. Exp Mol Med. 45:e33
Lee J, Ma K, Moulik M, Yechoor V (2018) Untimely oxidative stress in β-cells leads to diabetes—role of circadian clock in β-cell function. Free Radic Biol Med. 119:69–74
Leenaars CHC, Savelyev SA, Van der Mierden S, Joosten R, Dematteis M, Porkka-Heiskanen T et al (2018) Intracerebral adenosine during sleep deprivation: a meta-analysis and new experimental data. J Circadian Rhythms. 16:11
Leliavski A, Dumbell R, Ott V, Oster H (2015) Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology. J Biol Rhythms. 30(1):20–34
Lipton JO, Yuan ED, Boyle LM, Ebrahimi-Fakhari D, Kwiatkowski E, Nathan A et al (2015) The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation. Cell. 161(5):1138–1151
Loizides-Mangold U, Perrin L, Vandereycken B, Betts JA, Walhin JP, Templeman I et al (2017) Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proc Natl Acad Sci U S A. 114(41):E8565–E8E74
Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip–flop switch for control of REM sleep. Nature. 441(7093):589–594
Lucey BP, Fagan AM, Holtzman DM, Morris JC, Bateman RJ (2017) Diurnal oscillation of CSF Aβ and other AD biomarkers. Mol Neurodegener 12(1):36
Lucey BP, McCullough A, Landsness EC, Toedebusch CD, McLeland JS, Zaza AM et al (2019) Reduced non–rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease. Sci Transl Med 11(474):eaau6550
Machler P, Wyss MT, Elsayed M, Stobart J, Gutierrez R, von Faber-Castell A et al (2016) In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab. 23(1):94–102
Mallon L, Broman J-E, Hetta J (2005) High incidence of diabetes in men with sleep complaints or short sleep duration. Diabetes Care. 28(11):2762
Mang GM, La Spada F, Emmenegger Y, Chappuis S, Ripperger JA, Albrecht U et al (2016) Altered sleep homeostasis in rev-erbalpha knockout mice. Sleep. 39(3):589–601
Maquet P (1995) Sleep function(s) and cerebral metabolism. Behav Brain Res 69(1):75–83
Maquet P, Dive D, Salmon E, Sadzot B, Franco G, Poirrier R et al (1990) Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-d-glucose method. Brain Res 513(1):136–143
Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH et al (2013) Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Nat Acad Sci 110(14):5695–5700
Martinez-Lozano Sinues P, Tarokh L, Li X, Kohler M, Brown SA, Zenobi R et al (2014) Circadian variation of the human metabolome captured by real-time breath analysis. PLoS One. 9(12):e114422
Masri S, Orozco-Solis R, Aguilar-Arnal L, Cervantes M, Sassone-Corsi P (2015) Coupling circadian rhythms of metabolism and chromatin remodelling. Diabetes Obes Metab. 17(Suppl 1):17–22
McGinty D, Szymusiak R (2000) The sleep–wake switch: a neuronal alarm clock. Nature Med 6(5):510–511
Mikhail C, Vaucher A, Jimenez S, Tafti M (2017) ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness. Sci Signal 10(463):eaai9219
Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol. 146(1):1–14
Muheim CM, Spinnler A, Sartorius T, Durr R, Huber R, Kabagema C et al (2019) Dynamic- and frequency-specific regulation of sleep oscillations by cortical potassium channels. Curr Biol. 29(18):2983–2992. e3
Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N et al (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359(6381):eaao0318
Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 324(5927):654–657
Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H et al (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science. 308(5720):414–415
Nedeltcheva AV, Kilkus JM, Imperial J, Kasza K, Schoeller DA, Penev PD (2009) Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr. 89(1):126–133
Noya SB, Colameo D, Bruning F, Spinnler A, Mircsof D, Opitz L et al (2019) The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 366(6462):eaav2642
Oh J, Petersen C, Walsh CM, Bittencourt JC, Neylan TC, Grinberg LT (2019) The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry. 24(9):1284–1295
Ollila HM, Utge S, Kronholm E, Aho V, Leeuwen WV, Silander K et al (2012) TRIB1 constitutes a molecular link between regulation of sleep and lipid metabolism in humans. Translat Psychiatry 2(3):e97
O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature. 469(7331):498–503
O’Neill JS, Maywood ES, Hastings MH (2013) Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. Handb Exp Pharmacol. 217:67–103
Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ et al (2017) The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev. 38(1):3–45
Palca JW, Walker JM, Berger RJ (1986) Thermoregulation, metabolism, and stages of sleep in cold-exposed men. J Appl Phys 61(3):940–947. https://doi.org/10.1152/jappl1986613940
Pallayova M, Donic V, Tomori Z (2008) Beneficial effects of severe sleep apnea therapy on nocturnal glucose control in persons with type 2 diabetes mellitus. Diabetes Res Clin Pract 81(1):e8–e11
Pan A, Schernhammer ES, Sun Q, Hu FB (2011) Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 8(12):e1001141
Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G, Reyes TM et al (2012) Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med. 18(12):1768–1777
Penev PD (2007) Sleep deprivation and energy metabolism: to sleep, perchance to eat? Curr Opin Endocrinol Diabetes Obes 14(5):374–381
Perelis M, Marcheva B, Ramsey KM, Schipma MJ, Hutchison AL, Taguchi A et al (2015) Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 350(6261):aac4250
Perrin L, Loizides-Mangold U, Skarupelova S, Pulimeno P, Chanon S, Robert M et al (2015) Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion. Mol Metab. 4(11):834–845
Peter-Derex L, Yammine P, Bastuji H, Croisile B (2015) Sleep and Alzheimer’s disease. Sleep Med Rev 19:29–38
Petit JM, Tobler I, Allaman I, Borbély AA, Magistretti PJ (2002) Sleep deprivation modulates brain mRNAs encoding genes of glycogen metabolism. Eur J Neurosci. 16(6):1163–1167
Pillar G, Shehadeh N (2008) Abdominal fat and sleep Apnea. Diabetes Care 31(Supplement 2):S303
Puentes-Mestril C, Roach J, Niethard N, Zochowski M, Aton SJ (2019) How rhythms of the sleeping brain tune memory and synaptic plasticity. Sleep 42(7):zsz095
Qian J, Scheer FAJL (2016) Circadian system and glucose metabolism: implications for physiology and disease. Trends Endocrinol Metab. 27(5):282–293
Qian J, Morris CJ, Caputo R, Garaulet M, Scheer FAJL (2019) Ghrelin is impacted by the endogenous circadian system and by circadian misalignment in humans. Int J Obes (Lond). 43(8):1644–1649
Ramamoorthy S, Cidlowski JA (2016) Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin North Am. 42(1):15–31. vii
Ramos-Lopez O, Samblas M, Milagro FI, Riezu-Boj JI, Crujeiras AB, Martinez JA et al (2018) Circadian gene methylation profiles are associated with obesity, metabolic disturbances and carbohydrate intake. Chronobiol Int. 35(7):969–981. https://doi.org/10.1080/07420528.2018.1446021
Rechtschaffen A, Kales A (1968) A manual of standardized terminology, technique and scoring system for sleep stages of human sleep. Brain Information Service, Los Angeles
Reinke H, Asher G (2019) Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol. 20(4):227–241
Resuehr D, Wu G, Johnson RL Jr, Young ME, Hogenesch JB, Gamble KL (2019) Shift work disrupts circadian regulation of the transcriptome in hospital nurses. J Biol Rhythms. 34(2):167–177
Reutrakul S, Van Cauter E (2018) Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism. 84:56–66
Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation is a central mechanism for circadian control of metabolism and physiology. Cell Metab. 25(1):118–127
Roenneberg T, Allebrandt KV, Merrow M, Vetter C (2012) Social jetlag and obesity. Curr Biol. 22(10):939–943
Rosenbaum E (1892) Warum müssen wir schlafen? Eine neue Theorie des Schlafes. August Hirschwald, Berlin
Ryan S, Taylor CT, McNicholas WT (2006) Predictors of elevated nuclear factor-κB–dependent genes in obstructive sleep Apnea Syndrome. Am J Respir Crit Care Med 174(7):824–830
Sadacca LA, Lamia KA, de Lemos AS, Blum B, Weitz CJ (2011) An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia. 54(1):120–124
Sahar S, Sassone-Corsi P (2009) Metabolism and cancer: the circadian clock connection. Nat Rev Cancer. 9(12):886–896
Saini C, Liani A, Curie T, Gos P, Kreppel F, Emmenegger Y et al (2013) Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks. Genes Dev. 27(13):1526–1536
Sassin JF, Parker DC, Mace JW, Gotlin RW, Johnson LC, Rossman LG (1969) Human growth hormone release: relation to slow-wave sleep and sleep-waking cycles. Science 165(3892):513–515
Scheer FA, Morris CJ, Shea SA (2013) The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. Obesity (Silver Spring). 21(3):421–423
Schernhammer ES, Kroenke CH, Laden F, Hankinson SE (2006) Night work and risk of breast cancer. Epidemiology. 17(1):108–111
Schmid DA, Wichniak A, Uhr M, Ising M, Brunner H, Held K et al (2006) Changes of sleep architecture, spectral composition of sleep EEG, the nocturnal secretion of cortisol, ACTH, GH, Prolactin, Melatonin, Ghrelin, and Leptin, and the DEX-CRH test in depressed patients during treatment with mirtazapine. Neuropsychopharmacology. 31(4):832–844
Schmid SM, Hallschmid M, Jauch-Chara K, Wilms B, Benedict C, Lehnert H et al (2009) Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr 90(6):1476–1482
Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, Witzig M et al (2018) Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab 27(3):657–66.e5
Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24(4):345–357
Sharma S, Kavuru M (2010) Sleep and metabolism: an overview. Int J Endocrinol. 2010:270832
Shilts J, Chen G, Hughey JJ (2018) Evidence for widespread dysregulation of circadian clock progression in human cancer. PeerJ. 6:e4327
Siegel JM (2004) Hypocretin (OREXIN): role in normal behavior and neuropathology. Annual Rev Psychol 55(1):125–148
Simon C, Gronfier C, Schlienger JL, Brandenberger G (1998) Circadian and ultradian variations of leptin in normal man under continuous enteral nutrition: relationship to sleep and body temperature. J Clin Endocrinol Metab. 83(6):1893–1899
Sinturel F, Makhlouf AM, Meyer P, Tran C, Pataky Z, Golay A et al (2019) Cellular circadian period length inversely correlates with HbA. Diabetologia. 62(8):1453–1462
Sinues PM, Kohler M, Zenobi R (2013) Monitoring diurnal changes in exhaled human breath. Anal Chem. 85(1):369–373
Skene DJ, Skornyakov E, Chowdhury NR, Gajula RP, Middleton B, Satterfield BC et al (2018) Separation of circadian- and behavior-driven metabolite rhythms in humans provides a window on peripheral oscillators and metabolism. Proc Natl Acad Sci U S A. 115(30):7825–7830
Smurra M, Philip P, Taillard J, Guilleminault C, Bioulac B, Gin H (2001) CPAP treatment does not affect glucose–insulin metabolism in sleep apneic patients. Sleep Med 2(3):207–213
Spiegel K, Tasali E, Penev P, Van Cauter E (2004) Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 141(11):846–850
Stenvers DJ, Scheer F, Schrauwen P, la Fleur SE, Kalsbeek A (2019) Circadian clocks and insulin resistance. Nat Rev Endocrinol. 15(2):75–89
Sun T, Han X (2019) Death versus dedifferentiation: The molecular bases of beta cell mass reduction in type 2 diabetes. Semin Cell Dev Biol. 103:76–82
Tang F, Lane S, Korsak A, Paton JFR, Gourine AV, Kasparov S et al (2014) Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat Commun 5(1):1–14
Tatsuki F, Sunagawa GA, Shi S, Susaki EA, Yukinaga H, Perrin D et al (2016) Involvement of Ca(2+)-dependent hyperpolarization in sleep duration in mammals. Neuron. 90(1):70–85
Teske JA, Mavanji V (2012) Energy expenditure: role of orexin. Vitam Horm. 89:91–109
Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC et al (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 159(3):514–529
Tononi G, Cirelli C (2020) Sleep and synaptic down-selection. Eur J Neurosci. 51(1):413–421
Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 308(5724):1043–1045
Van Cauter E, Blackman JD, Roland D, Spire JP, Refetoff S, Polonsky KS (1991) Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J Clin Invest 88(3):934–942
van der Vinne V, Swoap SJ, Vajtay TJ, Weaver DR (2018) Desynchrony between brain and peripheral clocks caused by CK1δ/ε disruption in GABA neurons does not lead to adverse metabolic outcomes. Proc Natl Acad Sci U S A. 115(10):E2437–E2E46
Varin C, Rancillac A, Geoffroy H, Arthaud S, Fort P, Gallopin T (2015a) Glucose induces slow-wave sleep by exciting the sleep-promoting neurons in the ventrolateral preoptic nucleus: a new link between sleep and metabolism. J Neurosci 35(27):9900–9911
Varin C, Rancillac A, Geoffroy H, Arthaud S, Fort P, Gallopin T (2015b) Glucose induces slow-wave sleep by exciting the sleep-promoting neurons in the ventrolateral preoptic nucleus: a new link between sleep and metabolism. J Neurosci 35(27):9900–9911
Vetter C, Devore EE, Ramin CA, Speizer FE, Willett WC, Schernhammer ES (2015) Mismatch of sleep and work timing and risk of type 2 diabetes. Diabetes Care. 38(9):1707–1713
Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci U S A. 106(50):21453–21458
Wang Z, Ma J, Miyoshi C, Li Y, Sato M, Ogawa Y et al (2018) Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature. 558(7710):435–439
Webb P, Hiestand M (1975) Sleep metabolism and age. J Appl Phys 38(2):257–262. https://doi.org/10.1152/jappl1975382257
Weikel JC, Wichniak A, Ising M, Brunner H, Friess E, Held K et al (2003) Ghrelin promotes slow-wave sleep in humans. Am J Physiol Endocrinol Metab 284(2):E407–EE15
West SD, Nicoll DJ, Stradling JR (2006) Prevalence of obstructive sleep apnoea in men with type 2 diabetes. Thorax. 61(11):945
White DP, Weil JV, Zwillich CW (1985) Metabolic rate and breathing during sleep. J Appl Phys 59(2):384–391. https://doi.org/10.1152/jappl1985592384
Wisor JP, O’Hara BF, Terao A, Selby CP, Kilduff TS, Sancar A et al (2002) A role for cryptochromes in sleep regulation. BMC Neurosci. 3:20
Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M et al (2013) Sleep drives metabolite clearance from the adult brain. Science. 342(6156):373–377
Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M et al (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron. 38(5):701–713
Yehuda S, Sredni B, Carasso RL, Kenigsbuch-Sredni D (2009) REM sleep deprivation in rats results in inflammation and interleukin-17 elevation. J Interf Cytokine Res 29(7):393–398
Yu JH, Yun CH, Ahn JH, Suh S, Cho HJ, Lee SK et al (2015) Evening chronotype is associated with metabolic disorders and body composition in middle-aged adults. J Clin Endocrinol Metab. 100(4):1494–1502
Zhang Y, Fang B, Emmett MJ, Damle M, Sun Z, Feng D et al (2015) Gene regulation. Discrete functions of nuclear receptor Rev-erbalpha couple metabolism to the clock. Science. 348(6242):1488–1492
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Nowak, N., Rawleigh, A., Brown, S.A. (2021). Circadian Clocks, Sleep, and Metabolism. In: Engmann, O., Brancaccio, M. (eds) Circadian Clock in Brain Health and Disease. Advances in Experimental Medicine and Biology, vol 1344. Springer, Cham. https://doi.org/10.1007/978-3-030-81147-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-81147-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81146-4
Online ISBN: 978-3-030-81147-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)