Skip to main content

Circadian Clocks, Sleep, and Metabolism

  • Chapter
  • First Online:
Circadian Clock in Brain Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1344))

Abstract

A molecular circadian clock exists not only in the brain, but also in most cells of the body. Research over the past two decades has demonstrated that it directs daily rhythmicity of nearly every aspect of metabolism. It also consolidates sleep-wake behavior each day into an activity/feeding period and a sleep/fasting period. Otherwise, sleep-wake states are mostly controlled by hypothalamic and thalamic regulatory circuits in the brain that direct overall brain state. Recent evidence suggests that hypothalamic control of appetite and metabolism may be concomitant with sleep-wake regulation, and even share the same control centers. Thus, circadian control of metabolic pathways might be overlaid by sleep-wake control of the same pathways, providing a flexible and redundant system to modify metabolism according to both activity and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aalling NN, Nedergaard M, DiNuzzo M (2018) Cerebral metabolic changes during sleep. Curr Neurol Neurosci Rep 18(9):57

    PubMed  PubMed Central  Google Scholar 

  • Akerstedt T (1990) Psychological and psychophysiological effects of shift work. Scand J Work Environ Health. 16(Suppl 1):67–73

    PubMed  Google Scholar 

  • Albrecht U (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 74(2):246–260

    CAS  PubMed  Google Scholar 

  • Albrecht U, Eichele G (2003) The mammalian circadian clock. Curr Opin Genet Dev. 13(3):271–277

    CAS  PubMed  Google Scholar 

  • Allebrandt KV, Amin N, Müller-Myhsok B, Esko T, Teder-Laving M, Azevedo RVDM et al (2013) A KATP channel gene effect on sleep duration: from genome-wide association studies to function in Drosophila. Mol Psychiatry. 18(1):122–132

    CAS  PubMed  Google Scholar 

  • Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A (2016) Sleep disturbances compared to traditional risk factors for diabetes development: systematic review and meta-analysis. Sleep Med Rev. 30:11–24

    PubMed  Google Scholar 

  • Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW (2009) Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring). 17(11):2100–2102

    PubMed Central  Google Scholar 

  • Arendt J (2010) Shift work: coping with the biological clock. Occup Med (Lond). 60(1):10–20

    PubMed  Google Scholar 

  • Asarnow LD, Soehner AM, Harvey AG (2013) Circadian rhythms and psychiatric illness. Curr Opin Psychiatry. 26(6):566–571

    PubMed  PubMed Central  Google Scholar 

  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F et al (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 134(2):317–328

    CAS  PubMed  Google Scholar 

  • Asher G, Reinke H, Altmeyer M, Gutierrez-Arcelus M, Hottiger MO, Schibler U (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell. 142(6):943–953

    CAS  PubMed  Google Scholar 

  • Aviram R, Manella G, Kopelman N, Neufeld-Cohen A, Zwighaft Z, Elimelech M et al (2016) Lipidomics analyses reveal temporal and spatial lipid organization and uncover daily oscillations in intracellular organelles. Mol Cell. 62(4):636–648

    CAS  PubMed  Google Scholar 

  • Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 93(6):929–937

    CAS  PubMed  Google Scholar 

  • Barone MTU, Menna-Barreto L (2011) Diabetes and sleep: a complex cause-and-effect relationship. Diabetes Res Clin Pract 91(2):129–137

    PubMed  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science. 330(6009):1349–1354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beccuti G, Monagheddu C, Evangelista A, Ciccone G, Broglio F, Soldati L et al (2017) Timing of food intake: Sounding the alarm about metabolic impairments? A systematic review. Pharmacol Res 125(Pt B):132–141

    PubMed  Google Scholar 

  • Benegiamo G, Mure LS, Erikson G, Le HD, Moriggi E, Brown SA et al (2018) The RNA-binding protein NONO coordinates hepatic adaptation to feeding. Cell Metab 27(2):404–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berger RJ, Phillips NH (1995) Energy conservation and sleep. Behav Brain Res 69(1):65–73

    CAS  PubMed  Google Scholar 

  • Berridge CW, Schmeichel BE, España RA (2012) Noradrenergic modulation of wakefulness/arousal. Sleep Med Rev 16(2):187–197

    PubMed  PubMed Central  Google Scholar 

  • Besedovsky L, Lange T, Born J (2011) Sleep and immune function. Pflügers Archiv—Eur J Physiol 463(1):121–137

    Google Scholar 

  • Borbély AA (1982) A two process model of sleep regulation. Hum Neurobiol 1(3):195–204

    PubMed  Google Scholar 

  • Borbély AA, Daan S, Wirz-Justice A, Deboer T (2016) The two-process model of sleep regulation: a reappraisal. J Sleep Res 25(2):131–143

    PubMed  Google Scholar 

  • Boyle PJ, Scott JC, Krentz AJ, Nagy RJ, Comstock E, Hoffman C (1994) Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans. J Clin Invest 93(2):529–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brebbia DR, Altshuler KZ (1965) Oxygen consumption rate and electroencephalographic stage of sleep. Science 150(3703):1621–1623

    CAS  PubMed  Google Scholar 

  • Brestoff JR, Artis D (2015) Immune regulation of metabolic homeostasis in health and disease. Cell. 161(1):146–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SA (2016) Circadian metabolism: from mechanisms to metabolomics and medicine. Trends Endocrinol Metab. 27(6):415–426

    CAS  PubMed  Google Scholar 

  • Brown SA, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U (2002) Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol. 12(18):1574–1583

    CAS  PubMed  Google Scholar 

  • Brum MC, Filho FF, Schnorr CC, Bottega GB, Rodrigues TC (2015) Shift work and its association with metabolic disorders. Diabetol Metab Syndr. 7:45

    PubMed  PubMed Central  Google Scholar 

  • Bruning F, Noya SB, Bange T, Koutsouli S, Rudolph JD, Tyagarajan SK et al (2019a) Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science 366(6462):eaav3617

    PubMed  Google Scholar 

  • Bruning F, Noya SB, Bange T, Koutsouli S, Rudolph JD, Tyagarajan S et al (2019b) Sleep-wake cycles drive daily dynamics of synaptic phosphorylation. Science 366(6462):201

    Google Scholar 

  • Buijs RM, Kalsbeek A (2001) Hypothalamic integration of central and peripheral clocks. Nat Rev Neurosci. 2(7):521–526

    CAS  PubMed  Google Scholar 

  • Burdakov D, Jensen LT, Alexopoulos H, Williams RH, Fearon IM, O’Kelly I et al (2006) Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose. Neuron. 50(5):711–722

    CAS  PubMed  Google Scholar 

  • Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK (2010) Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes. 59(9):2126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cappuccio FP, Taggart FM, Kandala NB, Currie A, Peile E, Stranges S et al (2008) Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 31(5):619–626

    PubMed  PubMed Central  Google Scholar 

  • Cappuccio FP, Elia L, Strazzullo P, Miller MA (2010) Quantity and quality of sleep and incidence of type 2 diabetes. Diabetes Care. 33(2):414

    PubMed  Google Scholar 

  • Carroll CM, Macauley SL (2019) The interaction between sleep and metabolism in Alzheimer’s disease: cause or consequence of disease? Front Aging Neurosci 11:258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carter R, Watenpaugh DE (2008) Obesity and obstructive sleep apnea: or is it OSA and obesity? Pathophysiology. 15(2):71–77

    PubMed  Google Scholar 

  • Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL et al (2010) Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol. 185(10):5796–5805

    CAS  PubMed  Google Scholar 

  • Cedernaes J, Huang W, Ramsey KM, Waldeck N, Cheng L, Marcheva B et al (2019a) Transcriptional basis for rhythmic control of hunger and metabolism within the AgRP neuron. Cell Metab. 29(5):1078–1091. e5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cedernaes J, Waldeck N, Bass J (2019b) Neurogenetic basis for circadian regulation of metabolism by the hypothalamus. Genes Dev. 33(17-18):1136–1158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cederroth CR, Albrecht U, Bass J, Brown SA, Dyhrfjeld-Johnsen J, Gachon F et al (2019) Medicine in the fourth dimension. Cell Metab. 30(2):238–250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K-S, Xu M, Zhang Z, Chang W-C, Gaj T, Schaffer DV et al (2018) A hypothalamic switch for REM and non-REM sleep. Neuron 97(5):1168–76.e4

    CAS  PubMed  Google Scholar 

  • Chikahisa S, Séi H (2011) The role of ATP in sleep regulation. Front Neurol 2:87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron. 41(1):35–43

    CAS  PubMed  Google Scholar 

  • Codoñer-Franch P, Gombert M (2018) Circadian rhythms in the pathogenesis of gastrointestinal diseases. World J Gastroenterol. 24(38):4297–4303

    PubMed  PubMed Central  Google Scholar 

  • Coomans CP, Lucassen EA, Kooijman S, Fifel K, Deboer T, Rensen PC et al (2015) Plasticity of circadian clocks and consequences for metabolism. Diabetes Obes Metab. 17(Suppl 1):65–75

    PubMed  Google Scholar 

  • Crunelli V, Hughes SW (2010) The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci. 13(1):9–17

    CAS  PubMed  Google Scholar 

  • Dagan Y, Ayalon L (2005) Case study: psychiatric misdiagnosis of non-24-hours sleep-wake schedule disorder resolved by melatonin. J Am Acad Child Adolesc Psychiatry 44(12):1271–1275

    PubMed  Google Scholar 

  • Dahmen N, Bierbrauer J, Kasten M (2001) Increased prevalence of obesity in narcoleptic patients and relatives. Eur Arch Psychiatry Clin Neurosci 251(2):85–89

    CAS  PubMed  Google Scholar 

  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14(23):2950–2961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dauvilliers Y, Rompré S, Gagnon J-F, Vendette M, Petit D, Montplaisir J (2007) REM sleep characteristics in narcolepsy and REM sleep behavior disorder. Sleep. 30(7):844–849

    PubMed  PubMed Central  Google Scholar 

  • Depner CM, Melanson EL, Eckel RH, Snell-Bergeon JK, Perreault L, Bergman BC et al (2019) Ad libitum weekend recovery sleep fails to prevent metabolic dysregulation during a repeating pattern of insufficient sleep and weekend recovery sleep. Curr Biol. 29(6):957–967. e4

    CAS  PubMed  Google Scholar 

  • Dienel GA, Cruz NF (2016) Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism. J Neurochemistry. 138(1):14–52

    CAS  Google Scholar 

  • Diering GH, Nirujogi RS, Roth RH, Worley PF, Pandey A, Huganir RL (2017) Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science. 355(6324):511–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • DiNuzzo M, Nedergaard M (2017) Brain energetics during the sleep–wake cycle. Curr Opin Neurobiol 47:65–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eckel-Mahan KL, Patel VR, Mohney RP, Vignola KS, Baldi P, Sassone-Corsi P (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A. 109(14):5541–5546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elgar MA, Pagel MD, Harvey PH (1988) Sleep in mammals. Anim Behav 36(5):1407–1419

    Google Scholar 

  • Espitia-Bautista E, Velasco-Ramos M, Osnaya-Ramírez I, Ángeles-Castellanos M, Buijs RM, Escobar C (2017) Social jet-lag potentiates obesity and metabolic syndrome when combined with cafeteria diet in rats. Metabolism. 72:83–93

    CAS  PubMed  Google Scholar 

  • Everson CA, Toth LA (2000) Systemic bacterial invasion induced by sleep deprivation. Am J Physiol Regul Integr Comp Physiol 278(4):R905–RR16

    CAS  PubMed  Google Scholar 

  • Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T et al (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science. 331(6022):1315–1319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fontvieille AM, Rising R, Spraul M, Larson DE, Ravussin E (1994) Relationship between sleep stages and metabolic rate in humans. Am J Physiol Endocrinol Metab 267(5):E732–E737. https://doi.org/10.1152/ajpendo19942675E732

    Article  CAS  Google Scholar 

  • Foster GD, Sanders MH, Millman R, Zammit G, Borradaile KE, Newman AB et al (2009) Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care. 32(6):1017

    PubMed  PubMed Central  Google Scholar 

  • Gabelle A, Jaussent I, Hirtz C, Vialaret J, Navucet S, Grasselli C et al (2017) Cerebrospinal fluid levels of orexin-A and histamine, and sleep profile within the Alzheimer process. Neurobiology of Aging. 53:59–66

    CAS  PubMed  Google Scholar 

  • Gale SM, Castracane VD, Mantzoros CS (2004) Energy homeostasis, obesity and eating disorders: recent advances in endocrinology. J Nutr 134(2):295–298

    CAS  PubMed  Google Scholar 

  • Gómez-González B, Domínguez-Salazar E, Hurtado-Alvarado G, Esqueda-Leon E, Santana-Miranda R, Rojas-Zamorano JA et al (2012) Role of sleep in the regulation of the immune system and the pituitary hormones. Annals New York Acad Sci 1261(1):97–106

    Google Scholar 

  • Gorgoni M, D’Atri A, Lauri G, Rossini PM, Ferlazzo F, De Gennaro L (2013) Is sleep essential for neural plasticity in humans, and how does it affect motor and cognitive recovery? Neural Plast 2013:13

    Google Scholar 

  • Greene MW (2012) Circadian rhythms and tumor growth. Cancer Lett. 318(2):115–123

    CAS  PubMed  Google Scholar 

  • Greenwell BJ, Trott AJ, Beytebiere JR, Pao S, Bosley A, Beach E et al (2019) Rhythmic food intake drives rhythmic gene expression more potently than the hepatic circadian clock in mice. Cell Rep 27(3):649–57.e5

    CAS  PubMed  Google Scholar 

  • Harsch IA, Konturek PC, Koebnick C, Kuehnlein PP, Fuchs FS, Pour Schahin S et al (2003) Leptin and ghrelin levels in patients with obstructive sleep apnoea: effect of CPAP treatment. Eur Respirat J 22(2):251

    CAS  Google Scholar 

  • Haskell EH, Palca JW, Walker JM, Berger RJ, Heller HC (1981) Metabolism and thermoregulation during stages of sleep in humans exposed to heat and cold. J Appl Phys 51(4):948–954. https://doi.org/10.1152/jappl1981514948

    Article  CAS  Google Scholar 

  • Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S et al (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 15(6):848–860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht L, Möhler R, Meyer G (2011) Effects of CPAP-respiration on markers of glucose metabolism in patients with obstructive sleep apnoea syndrome: a systematic review and meta-analysis. Ger Med Sci 9:Doc20-Doc

    Google Scholar 

  • Holingue C, Wennberg A, Berger S, Polotsky VY, Spira AP (2018) Disturbed sleep and diabetes: a potential nexus of dementia risk. Metabolism. 84:85–93

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hor CN, Yeung J, Jan M, Emmenegger Y, Hubbard J, Xenarios I et al (2019) Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex. Proc Natl Acad Sci U S A. 116(51):25773–25783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsuchou H, Wang Y, Cornelissen-Guillaume GG, Kastin AJ, Jang E, Halberg F et al (2013) Diminished leptin signaling can alter circadian rhythm of metabolic activity and feeding. J Appl Physiol (1985) 115(7):995–1003

    CAS  Google Scholar 

  • Imeri L, Opp MR (2009) How (and why) the immune system makes us sleep. Nature Rev Neurosci 10(3):199–210

    CAS  Google Scholar 

  • Jordan SD, Lamia KA (2013) AMPK at the crossroads of circadian clocks and metabolism. Mol Cell Endocrinol. 366(2):163–169

    CAS  PubMed  Google Scholar 

  • Jung CM, Melanson EL, Frydendall EJ, Perreault L, Eckel RH, Wright KP (2011) Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J Physiol 589(1):235–244

    CAS  PubMed  Google Scholar 

  • Kalia M (2006) Neurobiology of sleep. Metabolism. 55:S2–S6

    CAS  PubMed  Google Scholar 

  • Kalsbeek A, Fliers E (2013) Daily regulation of hormone profiles. Handb Exp Pharmacol. 217:185–226

    CAS  Google Scholar 

  • Kayaba M, Park I, Iwayama K, Seya Y, Ogata H, Yajima K et al (2017) Energy metabolism differs between sleep stages and begins to increase prior to awakening. Metabolism. 69:14–23

    CAS  PubMed  Google Scholar 

  • Kelly RM, Healy U, Sreenan S, McDermott JH, Coogan AN (2018) Clocks in the clinic: circadian rhythms in health and disease. Postgrad Med J. 94(1117):653–658

    CAS  PubMed  Google Scholar 

  • Kervezee L, Cermakian N, Boivin DB (2019) Individual metabolomic signatures of circadian misalignment during simulated night shifts in humans. PLoS Biol. 17(6):e3000303

    PubMed  PubMed Central  Google Scholar 

  • Kil IS, Ryu KW, Lee SK, Kim JY, Chu SY, Kim JH et al (2015) Circadian oscillation of sulfiredoxin in the mitochondria. Mol Cell. 59(4):651–663

    CAS  PubMed  Google Scholar 

  • Kim MJ, Lee JH, Duffy JF (2013) Circadian rhythm sleep disorders. J Clin Outcomes Manag. 20(11):513–528

    PubMed  PubMed Central  Google Scholar 

  • Knutson KL (2007) Impact of sleep and sleep loss on glucose homeostasis and appetite regulation. Sleep Med Clin. 2(2):187–197

    PubMed  PubMed Central  Google Scholar 

  • Knutson KL, von Schantz M (2018) Associations between chronotype, morbidity and mortality in the UK Biobank cohort. Chronobiol Int. 35(8):1045–1053

    PubMed  PubMed Central  Google Scholar 

  • Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y et al (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6(5):414–421

    CAS  PubMed  Google Scholar 

  • Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 402(6762):656–660

    CAS  PubMed  Google Scholar 

  • Korenčič A, Košir R, Bordyugov G, Lehmann R, Rozman D, Herzel H (2014) Timing of circadian genes in mammalian tissues. Sci Rep. 4:5782

    PubMed  PubMed Central  Google Scholar 

  • Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut NH, Jonker JW et al (2011) Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature. 480(7378):552–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep. 28(4):395–409

    PubMed  Google Scholar 

  • Laposky AD, Shelton J, Bass J, Dugovic C, Perrino N, Turek FW (2006) Altered sleep regulation in leptin-deficient mice. Am J Physiol Regul Integr Comp Phys 290(4):R894–R903

    CAS  Google Scholar 

  • Latta F, Leproult R, Tasali E, Hofmann E, L’Hermite-Balériaux M, Copinschi G et al (2005) Sex differences in nocturnal growth hormone and prolactin secretion in healthy older adults: relationships with sleep EEG variables. Sleep. 28(12):1519–1524

    PubMed  Google Scholar 

  • Lee Y, Kim EK (2013) AMP-activated protein kinase as a key molecular link between metabolism and clockwork. Exp Mol Med. 45:e33

    PubMed  PubMed Central  Google Scholar 

  • Lee J, Ma K, Moulik M, Yechoor V (2018) Untimely oxidative stress in β-cells leads to diabetes—role of circadian clock in β-cell function. Free Radic Biol Med. 119:69–74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leenaars CHC, Savelyev SA, Van der Mierden S, Joosten R, Dematteis M, Porkka-Heiskanen T et al (2018) Intracerebral adenosine during sleep deprivation: a meta-analysis and new experimental data. J Circadian Rhythms. 16:11

    PubMed  PubMed Central  Google Scholar 

  • Leliavski A, Dumbell R, Ott V, Oster H (2015) Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology. J Biol Rhythms. 30(1):20–34

    CAS  PubMed  Google Scholar 

  • Lipton JO, Yuan ED, Boyle LM, Ebrahimi-Fakhari D, Kwiatkowski E, Nathan A et al (2015) The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation. Cell. 161(5):1138–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loizides-Mangold U, Perrin L, Vandereycken B, Betts JA, Walhin JP, Templeman I et al (2017) Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proc Natl Acad Sci U S A. 114(41):E8565–E8E74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip–flop switch for control of REM sleep. Nature. 441(7093):589–594

    CAS  PubMed  Google Scholar 

  • Lucey BP, Fagan AM, Holtzman DM, Morris JC, Bateman RJ (2017) Diurnal oscillation of CSF Aβ and other AD biomarkers. Mol Neurodegener 12(1):36

    PubMed  PubMed Central  Google Scholar 

  • Lucey BP, McCullough A, Landsness EC, Toedebusch CD, McLeland JS, Zaza AM et al (2019) Reduced non–rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease. Sci Transl Med 11(474):eaau6550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Machler P, Wyss MT, Elsayed M, Stobart J, Gutierrez R, von Faber-Castell A et al (2016) In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab. 23(1):94–102

    CAS  PubMed  Google Scholar 

  • Mallon L, Broman J-E, Hetta J (2005) High incidence of diabetes in men with sleep complaints or short sleep duration. Diabetes Care. 28(11):2762

    PubMed  Google Scholar 

  • Mang GM, La Spada F, Emmenegger Y, Chappuis S, Ripperger JA, Albrecht U et al (2016) Altered sleep homeostasis in rev-erbalpha knockout mice. Sleep. 39(3):589–601

    PubMed  PubMed Central  Google Scholar 

  • Maquet P (1995) Sleep function(s) and cerebral metabolism. Behav Brain Res 69(1):75–83

    CAS  PubMed  Google Scholar 

  • Maquet P, Dive D, Salmon E, Sadzot B, Franco G, Poirrier R et al (1990) Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-d-glucose method. Brain Res 513(1):136–143

    CAS  PubMed  Google Scholar 

  • Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH et al (2013) Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Nat Acad Sci 110(14):5695–5700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Lozano Sinues P, Tarokh L, Li X, Kohler M, Brown SA, Zenobi R et al (2014) Circadian variation of the human metabolome captured by real-time breath analysis. PLoS One. 9(12):e114422

    PubMed  PubMed Central  Google Scholar 

  • Masri S, Orozco-Solis R, Aguilar-Arnal L, Cervantes M, Sassone-Corsi P (2015) Coupling circadian rhythms of metabolism and chromatin remodelling. Diabetes Obes Metab. 17(Suppl 1):17–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGinty D, Szymusiak R (2000) The sleep–wake switch: a neuronal alarm clock. Nature Med 6(5):510–511

    CAS  PubMed  Google Scholar 

  • Mikhail C, Vaucher A, Jimenez S, Tafti M (2017) ERK signaling pathway regulates sleep duration through activity-induced gene expression during wakefulness. Sci Signal 10(463):eaai9219

    PubMed  Google Scholar 

  • Moore RY, Lenn NJ (1972) A retinohypothalamic projection in the rat. J Comp Neurol. 146(1):1–14

    CAS  PubMed  Google Scholar 

  • Muheim CM, Spinnler A, Sartorius T, Durr R, Huber R, Kabagema C et al (2019) Dynamic- and frequency-specific regulation of sleep oscillations by cortical potassium channels. Curr Biol. 29(18):2983–2992. e3

    CAS  PubMed  Google Scholar 

  • Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N et al (2018) Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359(6381):eaao0318

    PubMed  PubMed Central  Google Scholar 

  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 324(5927):654–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H et al (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science. 308(5720):414–415

    CAS  PubMed  Google Scholar 

  • Nedeltcheva AV, Kilkus JM, Imperial J, Kasza K, Schoeller DA, Penev PD (2009) Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr. 89(1):126–133

    CAS  PubMed  Google Scholar 

  • Noya SB, Colameo D, Bruning F, Spinnler A, Mircsof D, Opitz L et al (2019) The forebrain synaptic transcriptome is organized by clocks but its proteome is driven by sleep. Science 366(6462):eaav2642

    CAS  PubMed  Google Scholar 

  • Oh J, Petersen C, Walsh CM, Bittencourt JC, Neylan TC, Grinberg LT (2019) The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry. 24(9):1284–1295

    PubMed  Google Scholar 

  • Ollila HM, Utge S, Kronholm E, Aho V, Leeuwen WV, Silander K et al (2012) TRIB1 constitutes a molecular link between regulation of sleep and lipid metabolism in humans. Translat Psychiatry 2(3):e97

    CAS  Google Scholar 

  • O’Neill JS, Reddy AB (2011) Circadian clocks in human red blood cells. Nature. 469(7331):498–503

    PubMed  PubMed Central  Google Scholar 

  • O’Neill JS, Maywood ES, Hastings MH (2013) Cellular mechanisms of circadian pacemaking: beyond transcriptional loops. Handb Exp Pharmacol. 217:67–103

    Google Scholar 

  • Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ et al (2017) The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev. 38(1):3–45

    PubMed  Google Scholar 

  • Palca JW, Walker JM, Berger RJ (1986) Thermoregulation, metabolism, and stages of sleep in cold-exposed men. J Appl Phys 61(3):940–947. https://doi.org/10.1152/jappl1986613940

    Article  CAS  Google Scholar 

  • Pallayova M, Donic V, Tomori Z (2008) Beneficial effects of severe sleep apnea therapy on nocturnal glucose control in persons with type 2 diabetes mellitus. Diabetes Res Clin Pract 81(1):e8–e11

    CAS  PubMed  Google Scholar 

  • Pan A, Schernhammer ES, Sun Q, Hu FB (2011) Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women. PLoS Med. 8(12):e1001141

    PubMed  PubMed Central  Google Scholar 

  • Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G, Reyes TM et al (2012) Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med. 18(12):1768–1777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penev PD (2007) Sleep deprivation and energy metabolism: to sleep, perchance to eat? Curr Opin Endocrinol Diabetes Obes 14(5):374–381

    PubMed  Google Scholar 

  • Perelis M, Marcheva B, Ramsey KM, Schipma MJ, Hutchison AL, Taguchi A et al (2015) Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science 350(6261):aac4250

    PubMed  PubMed Central  Google Scholar 

  • Perrin L, Loizides-Mangold U, Skarupelova S, Pulimeno P, Chanon S, Robert M et al (2015) Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion. Mol Metab. 4(11):834–845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peter-Derex L, Yammine P, Bastuji H, Croisile B (2015) Sleep and Alzheimer’s disease. Sleep Med Rev 19:29–38

    PubMed  Google Scholar 

  • Petit JM, Tobler I, Allaman I, Borbély AA, Magistretti PJ (2002) Sleep deprivation modulates brain mRNAs encoding genes of glycogen metabolism. Eur J Neurosci. 16(6):1163–1167

    PubMed  Google Scholar 

  • Pillar G, Shehadeh N (2008) Abdominal fat and sleep Apnea. Diabetes Care 31(Supplement 2):S303

    PubMed  Google Scholar 

  • Puentes-Mestril C, Roach J, Niethard N, Zochowski M, Aton SJ (2019) How rhythms of the sleeping brain tune memory and synaptic plasticity. Sleep 42(7):zsz095

    PubMed  PubMed Central  Google Scholar 

  • Qian J, Scheer FAJL (2016) Circadian system and glucose metabolism: implications for physiology and disease. Trends Endocrinol Metab. 27(5):282–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian J, Morris CJ, Caputo R, Garaulet M, Scheer FAJL (2019) Ghrelin is impacted by the endogenous circadian system and by circadian misalignment in humans. Int J Obes (Lond). 43(8):1644–1649

    CAS  Google Scholar 

  • Ramamoorthy S, Cidlowski JA (2016) Corticosteroids: mechanisms of action in health and disease. Rheum Dis Clin North Am. 42(1):15–31. vii

    PubMed  PubMed Central  Google Scholar 

  • Ramos-Lopez O, Samblas M, Milagro FI, Riezu-Boj JI, Crujeiras AB, Martinez JA et al (2018) Circadian gene methylation profiles are associated with obesity, metabolic disturbances and carbohydrate intake. Chronobiol Int. 35(7):969–981. https://doi.org/10.1080/07420528.2018.1446021

    Article  CAS  PubMed  Google Scholar 

  • Rechtschaffen A, Kales A (1968) A manual of standardized terminology, technique and scoring system for sleep stages of human sleep. Brain Information Service, Los Angeles

    Google Scholar 

  • Reinke H, Asher G (2019) Crosstalk between metabolism and circadian clocks. Nat Rev Mol Cell Biol. 20(4):227–241

    CAS  PubMed  Google Scholar 

  • Resuehr D, Wu G, Johnson RL Jr, Young ME, Hogenesch JB, Gamble KL (2019) Shift work disrupts circadian regulation of the transcriptome in hospital nurses. J Biol Rhythms. 34(2):167–177

    PubMed  PubMed Central  Google Scholar 

  • Reutrakul S, Van Cauter E (2018) Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism. 84:56–66

    CAS  PubMed  Google Scholar 

  • Robles MS, Humphrey SJ, Mann M (2017) Phosphorylation is a central mechanism for circadian control of metabolism and physiology. Cell Metab. 25(1):118–127

    CAS  PubMed  Google Scholar 

  • Roenneberg T, Allebrandt KV, Merrow M, Vetter C (2012) Social jetlag and obesity. Curr Biol. 22(10):939–943

    CAS  PubMed  Google Scholar 

  • Rosenbaum E (1892) Warum müssen wir schlafen? Eine neue Theorie des Schlafes. August Hirschwald, Berlin

    Google Scholar 

  • Ryan S, Taylor CT, McNicholas WT (2006) Predictors of elevated nuclear factor-κB–dependent genes in obstructive sleep Apnea Syndrome. Am J Respir Crit Care Med 174(7):824–830

    CAS  PubMed  Google Scholar 

  • Sadacca LA, Lamia KA, de Lemos AS, Blum B, Weitz CJ (2011) An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia. 54(1):120–124

    CAS  PubMed  Google Scholar 

  • Sahar S, Sassone-Corsi P (2009) Metabolism and cancer: the circadian clock connection. Nat Rev Cancer. 9(12):886–896

    CAS  PubMed  Google Scholar 

  • Saini C, Liani A, Curie T, Gos P, Kreppel F, Emmenegger Y et al (2013) Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks. Genes Dev. 27(13):1526–1536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sassin JF, Parker DC, Mace JW, Gotlin RW, Johnson LC, Rossman LG (1969) Human growth hormone release: relation to slow-wave sleep and sleep-waking cycles. Science 165(3892):513–515

    CAS  PubMed  Google Scholar 

  • Scheer FA, Morris CJ, Shea SA (2013) The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. Obesity (Silver Spring). 21(3):421–423

    PubMed Central  Google Scholar 

  • Schernhammer ES, Kroenke CH, Laden F, Hankinson SE (2006) Night work and risk of breast cancer. Epidemiology. 17(1):108–111

    PubMed  Google Scholar 

  • Schmid DA, Wichniak A, Uhr M, Ising M, Brunner H, Held K et al (2006) Changes of sleep architecture, spectral composition of sleep EEG, the nocturnal secretion of cortisol, ACTH, GH, Prolactin, Melatonin, Ghrelin, and Leptin, and the DEX-CRH test in depressed patients during treatment with mirtazapine. Neuropsychopharmacology. 31(4):832–844

    CAS  PubMed  Google Scholar 

  • Schmid SM, Hallschmid M, Jauch-Chara K, Wilms B, Benedict C, Lehnert H et al (2009) Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr 90(6):1476–1482

    CAS  PubMed  Google Scholar 

  • Schmitt K, Grimm A, Dallmann R, Oettinghaus B, Restelli LM, Witzig M et al (2018) Circadian control of DRP1 activity regulates mitochondrial dynamics and bioenergetics. Cell Metab 27(3):657–66.e5

    CAS  PubMed  Google Scholar 

  • Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev. 24(4):345–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Kavuru M (2010) Sleep and metabolism: an overview. Int J Endocrinol. 2010:270832

    PubMed  PubMed Central  Google Scholar 

  • Shilts J, Chen G, Hughey JJ (2018) Evidence for widespread dysregulation of circadian clock progression in human cancer. PeerJ. 6:e4327

    PubMed  PubMed Central  Google Scholar 

  • Siegel JM (2004) Hypocretin (OREXIN): role in normal behavior and neuropathology. Annual Rev Psychol 55(1):125–148

    PubMed  Google Scholar 

  • Simon C, Gronfier C, Schlienger JL, Brandenberger G (1998) Circadian and ultradian variations of leptin in normal man under continuous enteral nutrition: relationship to sleep and body temperature. J Clin Endocrinol Metab. 83(6):1893–1899

    CAS  PubMed  Google Scholar 

  • Sinturel F, Makhlouf AM, Meyer P, Tran C, Pataky Z, Golay A et al (2019) Cellular circadian period length inversely correlates with HbA. Diabetologia. 62(8):1453–1462

    CAS  PubMed  Google Scholar 

  • Sinues PM, Kohler M, Zenobi R (2013) Monitoring diurnal changes in exhaled human breath. Anal Chem. 85(1):369–373

    CAS  PubMed  Google Scholar 

  • Skene DJ, Skornyakov E, Chowdhury NR, Gajula RP, Middleton B, Satterfield BC et al (2018) Separation of circadian- and behavior-driven metabolite rhythms in humans provides a window on peripheral oscillators and metabolism. Proc Natl Acad Sci U S A. 115(30):7825–7830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smurra M, Philip P, Taillard J, Guilleminault C, Bioulac B, Gin H (2001) CPAP treatment does not affect glucose–insulin metabolism in sleep apneic patients. Sleep Med 2(3):207–213

    CAS  PubMed  Google Scholar 

  • Spiegel K, Tasali E, Penev P, Van Cauter E (2004) Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 141(11):846–850

    PubMed  Google Scholar 

  • Stenvers DJ, Scheer F, Schrauwen P, la Fleur SE, Kalsbeek A (2019) Circadian clocks and insulin resistance. Nat Rev Endocrinol. 15(2):75–89

    PubMed  Google Scholar 

  • Sun T, Han X (2019) Death versus dedifferentiation: The molecular bases of beta cell mass reduction in type 2 diabetes. Semin Cell Dev Biol. 103:76–82

    PubMed  Google Scholar 

  • Tang F, Lane S, Korsak A, Paton JFR, Gourine AV, Kasparov S et al (2014) Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat Commun 5(1):1–14

    CAS  Google Scholar 

  • Tatsuki F, Sunagawa GA, Shi S, Susaki EA, Yukinaga H, Perrin D et al (2016) Involvement of Ca(2+)-dependent hyperpolarization in sleep duration in mammals. Neuron. 90(1):70–85

    CAS  PubMed  Google Scholar 

  • Teske JA, Mavanji V (2012) Energy expenditure: role of orexin. Vitam Horm. 89:91–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC et al (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 159(3):514–529

    CAS  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2020) Sleep and synaptic down-selection. Eur J Neurosci. 51(1):413–421

    PubMed  Google Scholar 

  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E et al (2005) Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 308(5724):1043–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Cauter E, Blackman JD, Roland D, Spire JP, Refetoff S, Polonsky KS (1991) Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. J Clin Invest 88(3):934–942

    PubMed  PubMed Central  Google Scholar 

  • van der Vinne V, Swoap SJ, Vajtay TJ, Weaver DR (2018) Desynchrony between brain and peripheral clocks caused by CK1δ/ε disruption in GABA neurons does not lead to adverse metabolic outcomes. Proc Natl Acad Sci U S A. 115(10):E2437–E2E46

    PubMed  PubMed Central  Google Scholar 

  • Varin C, Rancillac A, Geoffroy H, Arthaud S, Fort P, Gallopin T (2015a) Glucose induces slow-wave sleep by exciting the sleep-promoting neurons in the ventrolateral preoptic nucleus: a new link between sleep and metabolism. J Neurosci 35(27):9900–9911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varin C, Rancillac A, Geoffroy H, Arthaud S, Fort P, Gallopin T (2015b) Glucose induces slow-wave sleep by exciting the sleep-promoting neurons in the ventrolateral preoptic nucleus: a new link between sleep and metabolism. J Neurosci 35(27):9900–9911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vetter C, Devore EE, Ramin CA, Speizer FE, Willett WC, Schernhammer ES (2015) Mismatch of sleep and work timing and risk of type 2 diabetes. Diabetes Care. 38(9):1707–1713

    PubMed  PubMed Central  Google Scholar 

  • Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S (2009) Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci U S A. 106(50):21453–21458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Ma J, Miyoshi C, Li Y, Sato M, Ogawa Y et al (2018) Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature. 558(7710):435–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webb P, Hiestand M (1975) Sleep metabolism and age. J Appl Phys 38(2):257–262. https://doi.org/10.1152/jappl1975382257

    Article  CAS  Google Scholar 

  • Weikel JC, Wichniak A, Ising M, Brunner H, Friess E, Held K et al (2003) Ghrelin promotes slow-wave sleep in humans. Am J Physiol Endocrinol Metab 284(2):E407–EE15

    CAS  PubMed  Google Scholar 

  • West SD, Nicoll DJ, Stradling JR (2006) Prevalence of obstructive sleep apnoea in men with type 2 diabetes. Thorax. 61(11):945

    CAS  PubMed  PubMed Central  Google Scholar 

  • White DP, Weil JV, Zwillich CW (1985) Metabolic rate and breathing during sleep. J Appl Phys 59(2):384–391. https://doi.org/10.1152/jappl1985592384

    Article  CAS  Google Scholar 

  • Wisor JP, O’Hara BF, Terao A, Selby CP, Kilduff TS, Sancar A et al (2002) A role for cryptochromes in sleep regulation. BMC Neurosci. 3:20

    PubMed  PubMed Central  Google Scholar 

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M et al (2013) Sleep drives metabolite clearance from the adult brain. Science. 342(6156):373–377

    CAS  PubMed  Google Scholar 

  • Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M et al (2003) Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron. 38(5):701–713

    CAS  PubMed  Google Scholar 

  • Yehuda S, Sredni B, Carasso RL, Kenigsbuch-Sredni D (2009) REM sleep deprivation in rats results in inflammation and interleukin-17 elevation. J Interf Cytokine Res 29(7):393–398

    CAS  Google Scholar 

  • Yu JH, Yun CH, Ahn JH, Suh S, Cho HJ, Lee SK et al (2015) Evening chronotype is associated with metabolic disorders and body composition in middle-aged adults. J Clin Endocrinol Metab. 100(4):1494–1502

    CAS  PubMed  Google Scholar 

  • Zhang Y, Fang B, Emmett MJ, Damle M, Sun Z, Feng D et al (2015) Gene regulation. Discrete functions of nuclear receptor Rev-erbalpha couple metabolism to the clock. Science. 348(6242):1488–1492

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nowak, N., Rawleigh, A., Brown, S.A. (2021). Circadian Clocks, Sleep, and Metabolism. In: Engmann, O., Brancaccio, M. (eds) Circadian Clock in Brain Health and Disease. Advances in Experimental Medicine and Biology, vol 1344. Springer, Cham. https://doi.org/10.1007/978-3-030-81147-1_2

Download citation

Publish with us

Policies and ethics