Abstract
It is becoming increasingly recognized that patients with a variety of neurodegenerative diseases exhibit disordered sleep/wake patterns. While sleep impairments have typically been thought of as sequelae of underlying neurodegenerative processes in sleep-wake cycle regulating brain regions, including the brainstem, hypothalamus, and basal forebrain, emerging evidence now indicates that sleep deficits may also act as pathophysiological drivers of brain-wide disease progression. Specifically, recent work has indicated that impaired sleep can impact on neuronal activity, brain clearance mechanisms, pathological build-up of proteins, and inflammation. Altered sleep patterns may therefore be novel (potentially reversible) dynamic functional markers of proteinopathies and modifiable targets for early therapeutic intervention using non-invasive stimulation and behavioral techniques. Here we highlight research describing a potentially reciprocal interaction between impaired sleep and circadian patterns and the accumulation of pathological signs and features in Alzheimer’s disease, the most prevalent neurodegenerative disease in the elderly.
Keywords
- Sleep impairment
- Sleep-wake cycle
- Slow-wave sleep
- Learning and memory
- Alzheimer’s disease
- Amyloid-beta
- Tau
- Clinical
- Translational
This is a preview of subscription content, access via your institution.
Buying options



References
André C, Rehel S, Kuhn E, Landeau B, Moulinet I, Touron E, Ourry V, Le Du G, Mézenge F, Tomadesso C, de Flores R, Bejanin A, Sherif S, Delcroix N, Manrique A, Abbas A, Marchant NL, Lutz A, Klimecki OM, Collette F, Arenaza-Urquijo EM, Poisnel G, Vivien D, Bertran F, de la Sayette V, Chételat G, Rauchs G, for the Medit-Ageing Research Group (2020) Association of sleep-disordered breathing with Alzheimer disease biomarkers in community-dwelling older adults: a secondary analysis of a randomized clinical trial. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2020.0311
Arnes M, Alaniz ME, Karam CS, Cho JD, Lopez G, Javitch JA, Santa-Maria I (2019) Role of Tau protein in remodeling of circadian neuronal circuits and sleep. Front Aging Neurosci 11(320):320. https://doi.org/10.3389/fnagi.2019.00320
Barthelemy NR, Liu H, Lu W, Kotzbauer PT, Bateman RJ, Lucey BP (2020) Sleep deprivation affects tau phosphorylation in human cerebrospinal fluid. Ann Neurol 87(5):700–709. https://doi.org/10.1002/ana.25702
Beenhakker MP, Huguenard JR (2009) Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy? Neuron 62(5):612–632. https://doi.org/10.1016/j.neuron.2009.05.015
Benedict C, Cedernaes J, Giedraitis V, Nilsson EK, Hogenkamp PS, Vagesjo E, Massena S, Pettersson U, Christoffersson G, Phillipson M, Broman JE, Lannfelt L, Zetterberg H, Schioth HB (2014) Acute sleep deprivation increases serum levels of neuron-specific enolase (NSE) and S100 calcium binding protein B (S-100B) in healthy young men. Sleep 37(1):195–198. https://doi.org/10.5665/sleep.3336
Benedict C, Blennow K, Zetterberg H, Cedernaes J (2020) Effects of acute sleep loss on diurnal plasma dynamics of CNS health biomarkers in young men. Neurology 94(11):e1181–e1189. https://doi.org/10.1212/WNL.0000000000008866
Besedovsky L, Lange T, Born J (2012) Sleep and immune function. Pflugers Arch 463(1):121–137. https://doi.org/10.1007/s00424-011-1044-0
Besedovsky L, Lange T, Haack M (2019) The sleep-immune crosstalk in health and disease. Physiol Rev 99(3):1325–1380. https://doi.org/10.1152/physrev.00010.2018
Bombois S, Derambure P, Pasquier F, Monaca C (2010) Sleep disorders in aging and dementia. J Nutr Health Aging 14(3):212–217. https://doi.org/10.1007/s12603-010-0052-7
Bower MR, Stead M, Bower RS, Kucewicz MT, Sulc V, Cimbalnik J, Brinkmann BH, Vasoli VM, St Louis EK, Meyer FB, Marsh WR, Worrell GA (2015) Evidence for consolidation of neuronal assemblies after seizures in humans. J Neurosci 35(3):999–1010. https://doi.org/10.1523/JNEUROSCI.3019-14.2015
Bower MR, Kucewicz MT, St Louis EK, Meyer FB, Marsh WR, Stead M, Worrell GA (2017) Reactivation of seizure-related changes to interictal spike shape and synchrony during postseizure sleep in patients. Epilepsia 58(1):94–104. https://doi.org/10.1111/epi.13614
Boyce R, Glasgow SD, Williams S, Adamantidis A (2016) Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science (New York, NY) 352(6287):812. https://doi.org/10.1126/science.aad5252
Branger P, Arenaza-Urquijo EM, Tomadesso C, Mezenge F, Andre C, de Flores R, Mutlu J, de La Sayette V, Eustache F, Chetelat G, Rauchs G (2016) Relationships between sleep quality and brain volume, metabolism, and amyloid deposition in late adulthood. Neurobiol Aging 41:107–114. https://doi.org/10.1016/j.neurobiolaging.2016.02.009
Brown BM, Rainey-Smith SR, Villemagne VL, Weinborn M, Bucks RS, Sohrabi HR, Laws SM, Taddei K, Macaulay SL, Ames D, Fowler C, Maruff P, Masters CL, Rowe CC, Martins RN, AIBL Research Group (2016) The relationship between sleep quality and brain amyloid burden. Sleep 39(5):1063–1068. https://doi.org/10.5665/sleep.5756
Buchsbaum MS, Gillin JC, Wu J, Hazlett E, Sicotte N, Dupont RM, Bunney WE Jr (1989) Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography. Life Sci 45(15):1349–1356. https://doi.org/10.1016/0024-3205(89)90021-0
Buhl E, Higham JP, Hodge JJL (2019) Alzheimer’s disease-associated tau alters Drosophila circadian activity, sleep and clock neuron electrophysiology. Neurobiol Dis 130:104507. https://doi.org/10.1016/j.nbd.2019.104507
Busche MA, Hyman BT (2020) Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci 23(10):1183–1193. https://doi.org/10.1038/s41593-020-0687-6. Epub 2020 Aug 10
Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, Staufenbiel M, Konnerth A, Garaschuk O (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science (New York, NY) 321(5896):1686–1689. https://doi.org/10.1126/science.1162844
Busche MA, Chen X, Henning HA, Reichwald J, Staufenbiel M, Sakmann B, Konnerth A (2012) Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 109(22):8740–8745. https://doi.org/10.1073/pnas.1206171109
Busche MA, Kekus M, Adelsberger H, Noda T, Forstl H, Nelken I, Konnerth A (2015) Rescue of long-range circuit dysfunction in Alzheimer’s disease models. Nat Neurosci 18(11):1623–1630. https://doi.org/10.1038/nn.4137
Busche MA, Wegmann S, Dujardin S, Commins C, Schiantarelli J, Klickstein N, Kamath TV, Carlson GA, Nelken I, Hyman BT (2019) Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat Neurosci 22(1):57–64. https://doi.org/10.1038/s41593-018-0289-8
Cantero JL, Hita-Yanez E, Moreno-Lopez B, Portillo F, Rubio A, Avila J (2010) Tau protein role in sleep-wake cycle. J Alzheimers Dis 21(2):411–421. https://doi.org/10.3233/JAD-2010-100285
Carvalho DZ, St Louis EK, Schwarz CG, Lowe VJ, Boeve BF, Przybelski SA, Reddy A, Mielke MM, Knopman DS, Petersen RC, Jack CR Jr, Vemuri P (2020) Witnessed apneas are associated with elevated tau-PET levels in cognitively unimpaired elderly. Neurology 94(17):e1793–e1802. https://doi.org/10.1212/WNL.0000000000009315
Chen L, Huang J, Yang L, Zeng XA, Zhang Y, Wang X, Chen M, Li X, Zhang Y, Zhang M (2017) Sleep deprivation accelerates the progression of Alzheimer’s disease by influencing Abeta-related metabolism. Neurosci Lett 650:146–152. https://doi.org/10.1016/j.neulet.2017.04.047
Choe YM, Byun MS, Yi D, Lee JH, Jeon SY, Sohn BK, Kim YK, Shin SA, Sohn C-H, Lee YJ, Lee DY, for the KRG (2019) Sleep experiences during different lifetime periods and in vivo Alzheimer pathologies. Alzheimers Res Ther 11(1):79. https://doi.org/10.1186/s13195-019-0536-6
Cipriani G, Lucetti C, Danti S, Nuti A (2015) Sleep disturbances and dementia. Psychogeriatrics 15(1):65–74. https://doi.org/10.1111/psyg.12069. Epub 2014 Dec 16
Cirrito JR, Yamada KA, Finn MB, Sloviter RS, Bales KR, May PC, Schoepp DD, Paul SM, Mennerick S, Holtzman DM (2005) Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48(6):913–922. https://doi.org/10.1016/j.neuron.2005.10.028
Clark CN, Warren JD (2013) A hypnic hypothesis of Alzheimer’s disease. Neurodegener Dis 12(4):165–176. https://doi.org/10.1159/000350060
Colgin LL (2011) Oscillations and hippocampal-prefrontal synchrony. Curr Opin Neurobiol 21(3):467–474. https://doi.org/10.1016/j.conb.2011.04.006
Cuddapah VA, Zhang SL, Sehgal A (2019) Regulation of the blood-brain barrier by circadian rhythms and sleep. Trends Neurosci 42(7):500–510. https://doi.org/10.1016/j.tins.2019.05.001
Derry CP, Duncan S (2013) Sleep and epilepsy. Epilepsy Behav 26(3):394–404. https://doi.org/10.1016/j.yebeh.2012.10.033
Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11(2):114–126. https://doi.org/10.1038/nrn2762
Diep C, Ftouni S, Manousakis JE, Nicholas CL, Drummond SPA, Anderson C (2020) Acoustic slow wave sleep enhancement via a novel, automated device improves executive function in middle-aged men. Sleep 43(1). https://doi.org/10.1093/sleep/zsz197
Di Meco A, Joshi YB, Pratico D (2014) Sleep deprivation impairs memory, tau metabolism, and synaptic integrity of a mouse model of Alzheimer’s disease with plaques and tangles. Neurobiol Aging 35(8):1813–1820. https://doi.org/10.1016/j.neurobiolaging.2014.02.011
Ettore E, Bakardjian H, Solé M, Levy Nogueira M, Habert M-O, Gabelle A, Dubois B, Robert P, David R (2019) Relationships between objectives sleep parameters and brain amyloid load in subjects at risk for Alzheimer’s disease: the INSIGHT-preAD Study. Sleep 42(9). https://doi.org/10.1093/sleep/zsz137
Everson CA, Henchen CJ, Szabo A, Hogg N (2014) Cell injury and repair resulting from sleep loss and sleep recovery in laboratory rats. Sleep 37(12):1929–1940. https://doi.org/10.5665/sleep.4244
Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM (2007) Cerebrospinal fluid tau/β-amyloid42 ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 64(3):343–349
Forstl H, Burns A, Levy R, Cairns N, Luthert P, Lantos P (1992) Neurologic signs in Alzheimer’s disease. Results of a prospective clinical and neuropathologic study. Arch Neurol 49(10):1038–1042. https://doi.org/10.1001/archneur.1992.00530340054018
Frederikse PH, Garland D, Zigler JJ, Piatigorsky J (1996) Oxidative stress increases production of beta-amyloid precursor protein and beta-amyloid (Abeta) in mammalian lenses, and Abeta has toxic effects on lens epithelial cells. J Biol Chem 271(17):10169–10174
Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, Lewis LD (2019) Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science (New York, NY) 366(6465):628–631. https://doi.org/10.1126/science.aax5440
Gabelle A, Jaussent I, Hirtz C, Vialaret J, Navucet S, Grasselli C, Robert P, Lehmann S, Dauvilliers Y (2017) Cerebrospinal fluid levels of orexin-A and histamine, and sleep profile within the Alzheimer process. Neurobiol Aging 53:59–66. https://doi.org/10.1016/j.neurobiolaging.2017.01.011
Gabuzda D, Busciglio J, Chen LB, Matsudaira P, Yankner BA (1994) Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J Biol Chem 269(18):13623–13628
Geiger-Brown JM, Rogers VE, Liu W, Ludeman EM, Downton KD, Diaz-Abad M (2015) Cognitive behavioral therapy in persons with comorbid insomnia: a meta-analysis. Sleep Med Rev 23:54–67. https://doi.org/10.1016/j.smrv.2014.11.007
Gelinas JN, Khodagholy D, Thesen T, Devinsky O, Buzsaki G (2016) Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy. Nat Med 22(6):641–648. https://doi.org/10.1038/nm.4084
Grimmer T, Laub T, Hapfelmeier A, Eisele T, Fatke B, Hölzle P, Lüscher S, Parchmann A-M, Rentrop M, Schwerthöffer D, Müller-Sarnowski F, Ortner M, Goldhardt O, Kurz A, Förstl H, Alexopoulos P (2020) The overnight reduction of amyloid β 1-42 plasma levels is diminished by the extent of sleep fragmentation, sAPP-β, and APOE ε4 in psychiatrists on call. Alzheimers Dement. https://doi.org/10.1002/alz.12072
Hansson O, Seibyl J, Stomrud E, Zetterberg H, Trojanowski JQ, Bittner T, Lifke V, Corradini V, Eichenlaub U, Batrla R, Buck K, Zink K, Rabe C, Blennow K, Shaw LM (2018) CSF biomarkers of Alzheimer’s disease concord with amyloid-β PET and predict clinical progression: a study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement 14(11):1470–1481. https://doi.org/10.1016/j.jalz.2018.01.010
Harris SS, Wolf F, De Strooper B, Busche MA (2020) Tipping the scales: peptide-dependent dysregulation of neural circuit dynamics in Alzheimer’s disease. Neuron 107(3):417–435. https://doi.org/10.1016/j.neuron.2020.06.005. Epub 2020 Jun 23
Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D, Ono R, Kiyama H, Moorhouse AJ, Nabekura J, Wake H (2019) Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat Commun 10(1):5816. https://doi.org/10.1038/s41467-019-13812-z
He J, Hsuchou H, He Y, Kastin AJ, Wang Y, Pan W (2014) Sleep restriction impairs blood-brain barrier function. J Neurosci 34(44):14697–14706. https://doi.org/10.1523/JNEUROSCI.2111-14.2014
Helfrich RF, Lendner JD, Mander BA, Guillen H, Paff M, Mnatsakanyan L, Vadera S, Walker MP, Lin JJ, Knight RT (2019) Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans. Nat Commun 10(1):3572. https://doi.org/10.1038/s41467-019-11444-x
Henin S, Borges H, Shankar A, Sarac C, Melloni L, Friedman D, Flinker A, Parra LC, Buzsaki G, Devinsky O, Liu A (2019) Closed-loop acoustic stimulation enhances sleep oscillations but not memory performance. eneuro 6 (6). https://doi.org/10.1523/ENEURO.0306-19.2019
Herberger S, Kräuchi K, Glos M, Lederer K, Assmus L, Hein J, Penzel T, Fietze I (2019) Effects of sleep on a high heat capacity mattress on sleep stages, EEG power spectra, cardiac interbeat intervals and body temperatures in healthy middle-aged men. Sleep. https://doi.org/10.1093/sleep/zsz271
Herring WJ, Ceesay P, Snyder E, Bliwise D, Budd K, Hutzelmann J, Stevens J, Lines C, Michelson D (2020) Polysomnographic assessment of suvorexant in patients with probable Alzheimer’s disease dementia and insomnia: a randomized trial. Alzheimers Dement 16(3):541–551. https://doi.org/10.1002/alz.12035
Holth JK, Fritschi SK, Wang C, Pedersen NP, Cirrito JR, Mahan TE, Finn MB, Manis M, Geerling JC, Fuller PM, Lucey BP, Holtzman DM (2019) The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science (New York, NY) 363(6429):880–884. https://doi.org/10.1126/science.aav2546
Huang Y, Potter R, Sigurdson W, Santacruz A, Shih S, Ju YE, Kasten T, Morris JC, Mintun M, Duntley S, Bateman RJ (2012) Effects of age and amyloid deposition on Abeta dynamics in the human central nervous system. Arch Neurol 69(1):51–58. https://doi.org/10.1001/archneurol.2011.235
Huber R, Ghilardi MF, Massimini M, Tononi GJN (2004) Local sleep and learning. Nature 430 (6995):78–81
Iliff JJ, Wang M, Zeppenfeld DM, Venkataraman A, Plog BA, Liao Y, Deane R, Nedergaard M (2013) Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J Neurosci 33(46):18190–18199. https://doi.org/10.1523/JNEUROSCI.1592-13.2013
Izawa S, Chowdhury S, Miyazaki T, Mukai Y, Ono D, Inoue R, Ohmura Y, Mizoguchi H, Kimura K, Yoshioka M, Terao A, Kilduff TS, Yamanaka A (2019) REM sleep–active MCH neurons are involved in forgetting hippocampus-dependent memories. Science (New York, NY) 365 (6459):1308. https://doi.org/10.1126/science.aax9238
Joiner WJ (2019) Neuroscience: sleep fragmentation impairs memory formation. Curr Biol 29(22):R1181–R1184. https://doi.org/10.1016/j.cub.2019.09.060
Ju YE, Finn MB, Sutphen CL, Herries EM, Jerome GM, Ladenson JH, Crimmins DL, Fagan AM, Holtzman DM (2016) Obstructive sleep apnea decreases central nervous system-derived proteins in the cerebrospinal fluid. Ann Neurol 80(1):154–159. https://doi.org/10.1002/ana.24672
Ju YS, Ooms SJ, Sutphen C, Macauley SL, Zangrilli MA, Jerome G, Fagan AM, Mignot E, Zempel JM, Claassen J, Holtzman DM (2017) Slow wave sleep disruption increases cerebrospinal fluid amyloid-beta levels. Brain 140(8):2104–2111. https://doi.org/10.1093/brain/awx148
Ju YS, Zangrilli MA, Finn MB, Fagan AM, Holtzman DM (2019) Obstructive sleep apnea treatment, slow wave activity, and amyloid-β. Ann Neurol 85(2):291–295. https://doi.org/10.1002/ana.25408. Epub 2019 Jan 17
Kadotani H, Kadotani T, Young T, Peppard PE, Finn L, Colrain IM, Murphy GM Jr, Mignot E (2001) Association between apolipoprotein E epsilon4 and sleep-disordered breathing in adults. Jama 285(22):2888–2890. https://doi.org/10.1001/jama.285.22.2888
Kam K, Parekh A, Sharma RA, Andrade A, Lewin M, Castillo B, Bubu OM, Chua NJ, Miller MD, Mullins AE, Glodzik L, Mosconi L, Gosselin N, Prathamesh K, Chen Z, Blennow K, Zetterberg H, Bagchi N, Cavedoni B, Rapoport DM, Ayappa I, de Leon MJ, Petkova E, Varga AW, Osorio RS (2019a) Sleep oscillation-specific associations with Alzheimer’s disease CSF biomarkers: novel roles for sleep spindles and tau. Mol Neurodegener 14(1):10. https://doi.org/10.1186/s13024-019-0309-5
Kam K, Pettibone W, Shim K, Varga A (2019b) 0296 human tau-related impairment of sleep spindle-slow oscillation coupling in the PS19 mouse model of tauopathy. Sleep 42(Suppl_1):A121–A121. https://doi.org/10.1093/sleep/zsz067.295
Kaneshwaran K, Olah M, Tasaki S, Yu L, Bradshaw EM, Schneider JA, Buchman AS, Bennett DA, De Jager PL, Lim ASP (2019) Sleep fragmentation, microglial aging, and cognitive impairment in adults with and without Alzheimer’s dementia. Sci Adv 5(12):eaax7331. https://doi.org/10.1126/sciadv.aax7331
Kang JE, Cirrito JR, Dong H, Csernansky JG, Holtzman DM (2007) Acute stress increases interstitial fluid amyloid-beta via corticotropin-releasing factor and neuronal activity. Proc Natl Acad Sci U S A 104(25):10673–10678. https://doi.org/10.1073/pnas.0700148104
Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth LP, Cirrito JR, Fujiki N, Nishino S, Holtzman DM (2009) Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science (New York, NY) 326(5955):1005–1007. https://doi.org/10.1126/science.1180962
Keskin AD, Kekus M, Adelsberger H, Neumann U, Shimshek DR, Song B, Zott B, Peng T, Forstl H, Staufenbiel M, Nelken I, Sakmann B, Konnerth A, Busche MA (2017) BACE inhibition-dependent repair of Alzheimer’s pathophysiology. Proc Natl Acad Sci U S A 114(32):8631–8636. https://doi.org/10.1073/pnas.1708106114
Kim J, Gulati T, Ganguly K (2019) Competing roles of slow oscillations and delta waves in memory consolidation versus forgetting. Cell 179(2):514–526.e513. https://doi.org/10.1016/j.cell.2019.08.040
Kincheski GC, Valentim IS, Clarke JR, Cozachenco D, Castelo-Branco MTL, Ramos-Lobo AM, Rumjanek V, Donato J Jr, De Felice FG, Ferreira ST (2017) Chronic sleep restriction promotes brain inflammation and synapse loss, and potentiates memory impairment induced by amyloid-beta oligomers in mice. Brain Behav Immun 64:140–151. https://doi.org/10.1016/j.bbi.2017.04.007
Kiviniemi V, Wang X, Korhonen V, Keinanen T, Tuovinen T, Autio J, LeVan P, Keilholz S, Zang YF, Hennig J, Nedergaard M (2016) Ultra-fast magnetic resonance encephalography of physiological brain activity—glymphatic pulsation mechanisms? J Cereb Blood Flow Metab 36(6):1033–1045. https://doi.org/10.1177/0271678X15622047
Klinzing JG, Niethard N, Born J (2019) Mechanisms of systems memory consolidation during sleep. Nat Neurosci 22(10):1598–1610. https://doi.org/10.1038/s41593-019-0467-3
Krause AJ, Simon EB, Mander BA, Greer SM, Saletin JM, Goldstein-Piekarski AN, Walker MP (2017) The sleep-deprived human brain. Nat Rev Neurosci 18(7):404–418. https://doi.org/10.1038/nrn.2017.55
Krueger JM, Nguyen JT, Dykstra-Aiello CJ, Taishi P (2019) Local sleep. Sleep Med Rev 43:14–21. https://doi.org/10.1016/j.smrv.2018.10.001
Ladenbauer J, Ladenbauer J, Kulzow N, de Boor R, Avramova E, Grittner U, Floel A (2017) Promoting sleep oscillations and their functional coupling by transcranial stimulation enhances memory consolidation in mild cognitive impairment. J Neurosci 37(30):7111–7124. https://doi.org/10.1523/JNEUROSCI.0260-17.2017
Lam AD, Deck G, Goldman A, Eskandar EN, Noebels J, Cole AJ (2017) Silent hippocampal seizures and spikes identified by foramen ovale electrodes in Alzheimer’s disease. Nat Med 23(6):678–680. https://doi.org/10.1038/nm.4330
Lamberts RJ, Thijs RD, Laffan A, Langan Y, Sander JW (2012) Sudden unexpected death in epilepsy: people with nocturnal seizures may be at highest risk. Epilepsia 53(2):253–257. https://doi.org/10.1111/j.1528-1167.2011.03360.x
Larsen SMU, Landolt H-P, Berger W, Nedergaard M, Knudsen GM, Holst SC (2019) Haplotype of the astrocytic water channel AQP4 modulates slow wave energy in human NREM Sleep. bioRxiv https://doi.org/10.1101/2019.12.23.886952
Latchoumane CV, Ngo HV, Born J, Shin HS (2017) Thalamic spindles promote memory formation during sleep through triple phase-locking of cortical, thalamic, and hippocampal rhythms. Neuron 95(2):424–435.e426. https://doi.org/10.1016/j.neuron.2017.06.025
Levenstein D, Watson BO, Rinzel J, Buzsáki G (2017) Sleep regulation of the distribution of cortical firing rates. Curr Opin Neurobiol 44:34–42. https://doi.org/10.1016/j.conb.2017.02.013
Liguori C, Romigi A, Nuccetelli M, Zannino S, Sancesario G, Martorana A, Albanese M, Mercuri NB, Izzi F, Bernardini S, Nitti A, Sancesario GM, Sica F, Marciani MG, Placidi F (2014) Orexinergic system dysregulation, sleep impairment, and cognitive decline in Alzheimer disease. JAMA Neurol 71(12):1498–1505. https://doi.org/10.1001/jamaneurol.2014.2510
Liguori C, Mercuri NB, Izzi F, Romigi A, Cordella A, Sancesario G, Placidi F (2017) Obstructive sleep apnea is associated with early but possibly modifiable Alzheimer’s disease biomarkers changes. Sleep 40(5). https://doi.org/10.1093/sleep/zsx011
Lim AS, Kowgier M, Yu L, Buchman AS, Bennett DA (2013a) Sleep fragmentation and the risk of incident Alzheimer’s disease and cognitive decline in older persons. Sleep 36(7):1027–1032. https://doi.org/10.5665/sleep.2802
Lim AS, Yu L, Kowgier M, Schneider JA, Buchman AS, Bennett DA (2013b) Modification of the relationship of the apolipoprotein E epsilon4 allele to the risk of Alzheimer disease and neurofibrillary tangle density by sleep. JAMA Neurol 70(12):1544–1551. https://doi.org/10.1001/jamaneurol.2013.4215
Lucey BP, Hicks TJ, McLeland JS, Toedebusch CD, Boyd J, Elbert DL, Patterson BW, Baty J, Morris JC, Ovod V, Mawuenyega KG, Bateman RJ (2018) Effect of sleep on overnight cerebrospinal fluid amyloid beta kinetics. Ann Neurol 83(1):197–204. https://doi.org/10.1002/ana.25117
Lucey BP, McCullough A, Landsness EC, Toedebusch CD, McLeland JS, Zaza AM, Fagan AM, McCue L, Xiong C, Morris JC, Benzinger TLS, Holtzman DM (2019) Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease. Sci Transl Med 11(474):eaau6550. https://doi.org/10.1126/scitranslmed.aau6550
Maingret N, Girardeau G, Todorova R, Goutierre M, Zugaro M (2016) Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat Neurosci 19(7):959–964. https://doi.org/10.1038/nn.4304
Maleysson V, Page G, Janet T, Klein RL, Haida O, Maurin A, Richard S, Champeroux P, Fauconneau B (2019) Relevance of electroencephalogram assessment in amyloid and tau pathology in rat. Behav Brain Res 359:127–134. https://doi.org/10.1016/j.bbr.2018.10.026
Malow BA, Lin X, Kushwaha R, Aldrich MS (1998) Interictal spiking increases with sleep depth in temporal lobe epilepsy. Epilepsia 39(12):1309–1316. https://doi.org/10.1111/j.1528-1157.1998.tb01329.x
Mander BA, Rao V, Lu B, Saletin JM, Lindquist JR, Ancoli-Israel S, Jagust W, Walker MP (2013) Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat Neurosci 16(3):357–364. https://doi.org/10.1038/nn.3324
Mander BA, Marks SM, Vogel JW, Rao V, Lu B, Saletin JM, Ancoli-Israel S, Jagust WJ, Walker MP (2015) beta-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat Neurosci 18(7):1051–1057. https://doi.org/10.1038/nn.4035
Marshall L, Helgadottir H, Molle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444(7119):610–613. https://doi.org/10.1038/nature05278
Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G (2004) The sleep slow oscillation as a traveling wave. J Neurosci 24(31):6862–6870. https://doi.org/10.1523/JNEUROSCI.1318-04.2004
Mednick SC, McDevitt EA, Walsh JK, Wamsley E, Paulus M, Kanady JC, Drummond SP (2013) The critical role of sleep spindles in hippocampal-dependent memory: a pharmacology study. J Neurosci 33(10):4494–4504. https://doi.org/10.1523/jneurosci.3127-12.2013
Melov S, Adlard PA, Morten K, Johnson F, Golden TR, Hinerfeld D, Schilling B, Mavros C, Masters CL, Volitakis I, Li Q-X, Laughton K, Hubbard A, Cherny RA, Gibson B, Bush AI (2007) Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS One 2(6):e536. https://doi.org/10.1371/journal.pone.0000536
Menkes-Caspi N, Yamin HG, Kellner V, Spires-Jones TL, Cohen D, Stern EA (2015) Pathological tau disrupts ongoing network activity. Neuron 85(5):959–966. https://doi.org/10.1016/j.neuron.2015.01.025
Mestre H, Hablitz LM, Xavier AL, Feng W, Zou W, Pu T, Monai H, Murlidharan G, Castellanos Rivera RM, Simon MJ, Pike MM, Pla V, Du T, Kress BT, Wang X, Plog BA, Thrane AS, Lundgaard I, Abe Y, Yasui M, Thomas JH, Xiao M, Hirase H, Asokan A, Iliff JJ, Nedergaard M (2018) Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife 7:e40070. https://doi.org/10.7554/eLife.40070
Minakawa EN, Miyazaki K, Maruo K, Yagihara H, Fujita H, Wada K, Nagai Y (2017) Chronic sleep fragmentation exacerbates amyloid beta deposition in Alzheimer’s disease model mice. Neurosci Lett 653:362–369. https://doi.org/10.1016/j.neulet.2017.05.054
Morin CM, Benca R (2012) Chronic insomnia. Lancet 379(9821):1129–1141. https://doi.org/10.1016/S0140-6736(11)60750-2
Muller L, Chavane F, Reynolds J, Sejnowski TJ (2018) Cortical travelling waves: mechanisms and computational principles. Nat Rev Neurosci 19(5):255–268. https://doi.org/10.1038/nrn.2018.20
Musiek ES, Xiong DD, Holtzman DM (2015) Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease. Exp Mol Med 47(3):e148. https://doi.org/10.1038/emm.2014.121
Ngo HV, Martinetz T, Born J, Mölle M (2013) Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron 78(3):545–553. https://doi.org/10.1016/j.neuron.2013.03.006
Nguyen JP, Suarez A, Kemoun G, Meignier M, Le Saout E, Damier P, Nizard J, Lefaucheur JP (2017) Repetitive transcranial magnetic stimulation combined with cognitive training for the treatment of Alzheimer’s disease. Neurophysiologie clinique (Clin Neurophysiol) 47(1):47–53. https://doi.org/10.1016/j.neucli.2017.01.001
Ognjanovski N, Broussard C, Zochowski M, Aton SJ (2018) Hippocampal network oscillations rescue memory consolidation deficits caused by sleep loss. Cereb Cortex (New York, NY) 28(10):3711–3723. https://doi.org/10.1093/cercor/bhy174
Oh J, Eser RA, Ehrenberg AJ, Morales D, Petersen C, Kudlacek J, Dunlop SR, Theofilas P, Resende E, Cosme C, Alho EJL, Spina S, Walsh CM, Miller BL, Seeley WW, Bittencourt JC, Neylan TC, Heinsen H, Grinberg LT (2019a) Profound degeneration of wake-promoting neurons in Alzheimer’s disease. Alzheimers Dement 15(10):1253–1263. https://doi.org/10.1016/j.jalz.2019.06.3916
Oh J, Petersen C, Walsh CM, Bittencourt JC, Neylan TC, Grinberg LT (2019b) The role of co-neurotransmitters in sleep and wake regulation. Mol Psychiatry 24(9):1284–1295. https://doi.org/10.1038/s41380-018-0291-2
Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV (2004) Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27(7):1255–1273. https://doi.org/10.1093/sleep/27.7.1255
Olsson M, Arlig J, Hedner J, Blennow K, Zetterberg H (2018) Sleep deprivation and cerebrospinal fluid biomarkers for Alzheimer’s disease. Sleep 41(5). https://doi.org/10.1093/sleep/zsy025
Olsson M, Arlig J, Hedner J, Blennow K, Zetterberg H (2019) Repeated lumbar punctures within 3 days may affect CSF biomarker levels. Fluids Barriers CNS 16(1):37. https://doi.org/10.1186/s12987-019-0157-2
Ondze B, Espa F, Dauvilliers Y, Billiard M, Besset A (2003) Sleep architecture, slow wave activity and sleep spindles in mild sleep disordered breathing. Clin Neurophysiol 114(5):867–874. https://doi.org/10.1016/s1388-2457(02)00389-9
Ooms S, Overeem S, Besse K, Rikkert MO, Verbeek M, Claassen JA (2014) Effect of 1 night of total sleep deprivation on cerebrospinal fluid beta-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol 71(8):971–977. https://doi.org/10.1001/jamaneurol.2014.1173
Osorio RS, Pirraglia E, Agüera-Ortiz LF, During EH, Sacks H, Ayappa I, Walsleben J, Mooney A, Hussain A, Glodzik L, Frangione B, Martínez-Martín P, de Leon MJ (2011) Greater risk of Alzheimer’s disease in older adults with insomnia. J Am Geriatr Soc 59(3):559–562. https://doi.org/10.1111/j.1532-5415.2010.03288.x
Osorio RS, Gumb T, Pirraglia E, Varga AW, Lu SE, Lim J, Wohlleber ME, Ducca EL, Koushyk V, Glodzik L, Mosconi L, Ayappa I, Rapoport DM, de Leon MJ (2015) Alzheimer’s disease neuroimaging initiative. Sleep-disordered breathing advances cognitive decline in the elderly. Neurology 84(19):1964–1971. https://doi.org/10.1212/WNL.0000000000001566. Epub 2015 Apr 15
Osorio RS, Ducca EL, Wohlleber ME, Tanzi EB, Gumb T, Twumasi A, Tweardy S, Lewis C, Fischer E, Koushyk V, Cuartero-Toledo M, Sheikh MO, Pirraglia E, Zetterberg H, Blennow K, Lu SE, Mosconi L, Glodzik L, Schuetz S, Varga AW, Ayappa I, Rapoport DM, de Leon MJ (2016) Orexin-A is associated with increases in cerebrospinal fluid phosphorylated-tau in cognitively normal elderly subjects. Sleep 39(6):1253–1260. https://doi.org/10.5665/sleep.5846
Palmqvist S, Schöll M, Strandberg O, Mattsson N, Stomrud E, Zetterberg H, Blennow K, Landau S, Jagust W, Hansson O (2017) Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat Commun 8(1):1214. https://doi.org/10.1038/s41467-017-01150-x
Pooler AM, Phillips EC, Lau DHW, Noble W, Hanger DP (2013) Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep 14(4):389–394. https://doi.org/10.1038/embor.2013.15
Prinz PN, Vitaliano PP, Vitiello MV, Bokan J, Raskind M, Peskind E, Gerber C (1982) Sleep, EEG and mental function changes in senile dementia of the Alzheimer’s type. Neurobiol Aging 3(4):361–370. https://doi.org/10.1016/0197-4580(82)90024-0
Qiu H, Zhong R, Liu H, Zhang F, Li S, Le W (2016) Chronic sleep deprivation exacerbates learning-memory disability and Alzheimer’s disease-like pathologies in AbetaPP(swe)/PS1(DeltaE9) mice. J Alzheimers Dis 50(3):669–685. https://doi.org/10.3233/JAD-150774
Rainey-Smith SR, Mazzucchelli GN, Villemagne VL, Brown BM, Porter T, Weinborn M, Bucks RS, Milicic L, Sohrabi HR, Taddei K, Ames D, Maruff P, Masters CL, Rowe CC, Salvado O, Martins RN, Laws SM, AIBL Research Group (2018) Genetic variation in Aquaporin-4 moderates the relationship between sleep and brain Abeta-amyloid burden. Transl Psychiatry 8(1):47. https://doi.org/10.1038/s41398-018-0094-x
Rasch B, Büchel C, Gais S, Born JJS (2007) Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315 (5817):1426–1429
Rauch JN, Luna G, Guzman E, Audouard M, Challis C, Sibih YE, Leshuk C, Hernandez I, Wegmann S, Hyman BT, Gradinaru V, Kampmann M, Kosik KS (2020) LRP1 is a master regulator of tau uptake and spread. Nature 580(7803):381–385. https://doi.org/10.1038/s41586-020-2156-5
Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR, Bateman RJ, Holtzman DM (2012) Disruption of the sleep-wake cycle and diurnal fluctuation of beta-amyloid in mice with Alzheimer’s disease pathology. Sci Transl Med 4 (150):150ra122. https://doi.org/10.1126/scitranslmed.3004291
Roh JH, Jiang H, Finn MB, Stewart FR, Mahan TE, Cirrito JR, Heda A, Snider BJ, Li M, Yanagisawa M, de Lecea L, Holtzman DM (2014) Potential role of orexin and sleep modulation in the pathogenesis of Alzheimer’s disease. J Exp Med 211(13):2487–2496. https://doi.org/10.1084/jem.20141788
Ryvlin P, Nashef L, Lhatoo SD, Bateman LM, Bird J, Bleasel A, Boon P, Crespel A, Dworetzky BA, Hogenhaven H, Lerche H, Maillard L, Malter MP, Marchal C, Murthy JM, Nitsche M, Pataraia E, Rabben T, Rheims S, Sadzot B, Schulze-Bonhage A, Seyal M, So EL, Spitz M, Szucs A, Tan M, Tao JX, Tomson T (2013) Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol 12(10):966–977. https://doi.org/10.1016/S1474-4422(13)70214-X
Samann PG, Wehrle R, Hoehn D, Spoormaker VI, Peters H, Tully C, Holsboer F, Czisch M (2011) Development of the brain’s default mode network from wakefulness to slow wave sleep. Cereb Cortex (New York, NY) 21(9):2082–2093. https://doi.org/10.1093/cercor/bhq295
Sanchez-Espinosa MP, Atienza M, Cantero JL (2014) Sleep deficits in mild cognitive impairment are related to increased levels of plasma amyloid-beta and cortical thinning. NeuroImage 98:395–404. https://doi.org/10.1016/j.neuroimage.2014.05.027
Scalise A, Desiato MT, Gigli GL, Romigi A, Tombini M, Marciani MG, Izzi F, Placidi F (2006) Increasing cortical excitability: a possible explanation for the proconvulsant role of sleep deprivation. Sleep 29(12):1595–1598. https://doi.org/10.1093/sleep/29.12.1595
Scarmeas N, Honig LS, Choi H, Cantero J, Brandt J, Blacker D, Albert M, Amatniek JC, Marder K, Bell K, Hauser WA, Stern Y (2009) Seizures in Alzheimer disease: who, when, and how common? Arch Neurol 66(8):992–997. https://doi.org/10.1001/archneurol.2009.130
Shokouhi S (2019) Associations of informant-based sleep reports with Alzheimer’s disease pathologies. Clin Interv Aging 14:1631–1642. https://doi.org/10.2147/CIA.S215208
Shokri-Kojori E, Wang GJ, Wiers CE, Demiral SB, Guo M, Kim SW, Lindgren E, Ramirez V, Zehra A, Freeman C, Miller G, Manza P, Srivastava T, De Santi S, Tomasi D, Benveniste H, Volkow ND (2018) beta-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A 115(17):4483–4488. https://doi.org/10.1073/pnas.1721694115
Sirota A, Buzsáki G (2005) Interaction between neocortical and hippocampal networks via slow oscillations. Thalamus Relat Syst 3(4):245–259
Sirota A, Csicsvari J, Buhl D, Buzsáki G (2003) Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci U S A 100(4):2065–2069
Spira AP, An Y, Wu MN, Owusu JT, Simonsick EM, Bilgel M, Ferrucci L, Wong DF, Resnick SM (2018) Excessive daytime sleepiness and napping in cognitively normal adults: associations with subsequent amyloid deposition measured by PiB PET. Sleep 41(10). https://doi.org/10.1093/sleep/zsy152
Sprecher KE, Koscik RL, Carlsson CM, Zetterberg H, Blennow K, Okonkwo OC, Sager MA, Asthana S, Johnson SC, Benca RM, Bendlin BB (2017) Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology 89(5):445–453. https://doi.org/10.1212/WNL.0000000000004171
Storck SE, Meister S, Nahrath J, Meissner JN, Schubert N, Di Spiezio A, Baches S, Vandenbroucke RE, Bouter Y, Prikulis I, Korth C, Weggen S, Heimann A, Schwaninger M, Bayer TA, Pietrzik CU (2016) Endothelial LRP1 transports amyloid-beta(1-42) across the blood-brain barrier. J Clin Invest 126(1):123–136. https://doi.org/10.1172/JCI81108
Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 342(1):37–44. https://doi.org/10.1016/0006-8993(85)91350-2
Tabuchi M, Lone SR, Liu S, Liu Q, Zhang J, Spira AP, Wu MN (2015) Sleep interacts with abeta to modulate intrinsic neuronal excitability. Curr Biol 25(6):702–712. https://doi.org/10.1016/j.cub.2015.01.016
Taheri S, Zeitzer JM, Mignot E (2002) The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu Rev Neurosci 25(1):283–313. https://doi.org/10.1146/annurev.neuro.25.112701.142826
Tarumi T, Harris TS, Hill C, German Z, Riley J, Turner M, Womack KB, Kerwin DR, Monson NL, Stowe AM, Mathews D, Cullum CM, Zhang R (2015) Amyloid burden and sleep blood pressure in amnestic mild cognitive impairment. Neurology 85(22):1922–1929. https://doi.org/10.1212/WNL.0000000000002167
Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10(1):49–62. https://doi.org/10.1016/j.smrv.2005.05.002
Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81(1):12–34. https://doi.org/10.1016/j.neuron.2013.12.025
Ulery PG, Beers J, Mikhailenko I, Tanzi RE, Rebeck GW, Hyman BT, Strickland DK (2000) Modulation of β-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). Evidence that LRP contributes to the pathogenesis of Alzheimer’s disease. J Biol Chem 275(10):7410–7415
Van Der Werf YD, Altena E, Schoonheim MM, Sanz-Arigita EJ, Vis JC, De Rijke W, Van Someren EJ (2009) Sleep benefits subsequent hippocampal functioning. Nat Neurosci 12(2):122–123. https://doi.org/10.1038/nn.2253
van Veluw SJ, Hou SS, Calvo-Rodriguez M, Arbel-Ornath M, Snyder AC, Frosch MP, Greenberg SM, Bacskai BJ (2020) Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron 105(3):549–561.e545. https://doi.org/10.1016/j.neuron.2019.10.033
Varga AW, Wohlleber ME, Gimenez S, Romero S, Alonso JF, Ducca EL, Kam K, Lewis C, Tanzi EB, Tweardy S, Kishi A, Parekh A, Fischer E, Gumb T, Alcolea D, Fortea J, Lleo A, Blennow K, Zetterberg H, Mosconi L, Glodzik L, Pirraglia E, Burschtin OE, de Leon MJ, Rapoport DM, Lu SE, Ayappa I, Osorio RS (2016) Reduced slow-wave sleep is associated with high cerebrospinal fluid Abeta42 levels in cognitively normal elderly. Sleep 39(11):2041–2048. https://doi.org/10.5665/sleep.6240
Vossel KA, Beagle AJ, Rabinovici GD, Shu H, Lee SE, Naasan G, Hegde M, Cornes SB, Henry ML, Nelson AB, Seeley WW, Geschwind MD, Gorno-Tempini ML, Shih T, Kirsch HE, Garcia PA, Miller BL, Mucke L (2013) Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol 70(9):1158–1166. https://doi.org/10.1001/jamaneurol.2013.136
Vossel KA, Ranasinghe KG, Beagle AJ, Mizuiri D, Honma SM, Dowling AF, Darwish SM, Van Berlo V, Barnes DE, Mantle M, Karydas AM, Coppola G, Roberson ED, Miller BL, Garcia PA, Kirsch HE, Mucke L, Nagarajan SS (2016) Incidence and impact of subclinical epileptiform activity in Alzheimer’s disease. Ann Neurol 80(6):858–870. https://doi.org/10.1002/ana.24794
Warren JD, Clark CN (2017) A new hypnic paradigm of neurodegenerative proteinopathies. Sleep Med 32:282–283. https://doi.org/10.1016/j.sleep.2016.12.006
Watson BO, Levenstein D, Greene JP, Gelinas JN, Buzsaki G (2016) Network homeostasis and state dynamics of neocortical sleep. Neuron 90(4):839–852. https://doi.org/10.1016/j.neuron.2016.03.036
Wei M, Zhao B, Huo K, Deng Y, Shang S, Liu J, Li Y, Ma L, Jiang Y, Dang L, Chen C, Wei S, Zhang J, Yang H, Gao F, Qu Q (2017) Sleep deprivation induced plasma amyloid-beta transport disturbance in healthy young adults. J Alzheimers Dis 57(3):899–906. https://doi.org/10.3233/JAD-161213
Westerberg CE, Florczak SM, Weintraub S, Mesulam MM, Marshall L, Zee PC, Paller KA (2015) Memory improvement via slow-oscillatory stimulation during sleep in older adults. Neurobiol Aging 36(9):2577–2586. https://doi.org/10.1016/j.neurobiolaging.2015.05.014
Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science (New York, NY) 265(5172):676–679. https://doi.org/10.1126/science.8036517
Winer JR, Mander BA, Helfrich RF, Maass A, Harrison TM, Baker SL, Knight RT, Jagust WJ, Walker MP (2019) Sleep as a potential biomarker of tau and beta-amyloid burden in the human brain. J Neurosci 39(32):6315–6324. https://doi.org/10.1523/JNEUROSCI.0503-19.2019
Wolf J, Hering D, Narkiewicz K (2010) Non-dipping pattern of hypertension and obstructive sleep apnea syndrome. Hypertens Res 33(9):867–871. https://doi.org/10.1038/hr.2010.153
Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K, Sanders DW, Cook C, Fu H, Boonen RA, Herman M, Nahmani E, Emrani S, Figueroa YH, Diamond MI, Clelland CL, Wray S, Duff KE (2016) Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci 19(8):1085–1092. https://doi.org/10.1038/nn.4328
Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M (2013) Sleep drives metabolite clearance from the adult brain. Science (New York, NY) 342(6156):373–377. https://doi.org/10.1126/science.1241224
Yaffe K, Laffan AM, Harrison SL, Redline S, Spira AP, Ensrud KE, Ancoli-Israel S, Stone KL (2011) Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA 306(6):613–619. https://doi.org/10.1001/jama.2011.1115
Yamada K, Holth JK, Liao F, Stewart FR, Mahan TE, Jiang H, Cirrito JR, Patel TK, Hochgrafe K, Mandelkow EM, Holtzman DM (2014) Neuronal activity regulates extracellular tau in vivo. J Exp Med 211(3):387–393. https://doi.org/10.1084/jem.20131685
Yonelinas AP, Ranganath C, Ekstrom AD, Wiltgen BJ (2019) A contextual binding theory of episodic memory: systems consolidation reconsidered. Nat Rev Neurosci 20(6):364–375. https://doi.org/10.1038/s41583-019-0150-4
You JC, Jones E, Cross DE, Lyon AC, Kang H, Newberg AB, Lippa CF (2019) Association of β-amyloid burden with sleep dysfunction and cognitive impairment in elderly individuals with cognitive disorders. JAMA Netw Open 2(10):e1913383. https://doi.org/10.1001/jamanetworkopen.2019.13383
Zada D, Bronshtein I, Lerer-Goldshtein T, Garini Y, Appelbaum L (2019) Sleep increases chromosome dynamics to enable reduction of accumulating DNA damage in single neurons. Nat Commun 10(1):895. https://doi.org/10.1038/s41467-019-08806-w
Zhao H, Wu H, He J, Zhuang J, Liu Z, Yang Y, Huang L, Zhao Z (2016) Frontal cortical mitochondrial dysfunction and mitochondria-related beta-amyloid accumulation by chronic sleep restriction in mice. Neuroreport 27(12):916–922. https://doi.org/10.1097/WNR.0000000000000631
Zhao HY, Wu HJ, He JL, Zhuang JH, Liu ZY, Huang LQ, Zhao ZX (2017) Chronic sleep restriction induces cognitive deficits and cortical beta-amyloid deposition in mice via BACE1-antisense activation. CNS Neurosci Ther 23(3):233–240. https://doi.org/10.1111/cns.12667
Zhao B, Liu P, Wei M, Li Y, Liu J, Ma L, Shang S, Jiang Y, Huo K, Wang J, Qu Q (2019) Chronic sleep restriction induces abeta accumulation by disrupting the balance of abeta production and clearance in rats. Neurochem Res 44(4):859–873. https://doi.org/10.1007/s11064-019-02719-2
Zhu Y, Zhan G, Fenik P, Brandes M, Bell P, Francois N, Shulman K, Veasey S (2018) Chronic sleep disruption advances the temporal progression of tauopathy in P301S mutant mice. J Neurosci 38(48):10255–10270. https://doi.org/10.1523/JNEUROSCI.0275-18.2018
Zhurakovskaya E, Ishchenko I, Gureviciene I, Aliev R, Grohn O, Tanila H (2019) Impaired hippocampal-cortical coupling but preserved local synchrony during sleep in APP/PS1 mice modeling Alzheimer’s disease. Sci Rep 9(1):5380. https://doi.org/10.1038/s41598-019-41851-5
Acknowledgements
SSH, TSK, BIL, and MAB are supported by the UK Dementia Research Institute which receives its funding from DRI Ltd, funded by the Medical Research Council, Alzheimer’s Society and Alzheimer Research UK. We acknowledge the donors of Alzheimer’s Disease Research, a program of BrightFocus Foundation, for support of this research (Grant Number: A2019112S). SSH is further supported by a UK DRI Pilot Studies programme award. MAB is further supported by a UKRI Future Leaders Fellowship (Grant Number: MR/S017003/1).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Harris, S.S., Schwerd-Kleine, T., Lee, B.I., Busche, M.A. (2021). The Reciprocal Interaction Between Sleep and Alzheimer’s Disease. In: Engmann, O., Brancaccio, M. (eds) Circadian Clock in Brain Health and Disease. Advances in Experimental Medicine and Biology, vol 1344. Springer, Cham. https://doi.org/10.1007/978-3-030-81147-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-81147-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-81146-4
Online ISBN: 978-3-030-81147-1
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)