Skip to main content

Recent Advances in Genetics, Genomics, and Breeding for Nutritional Quality in Groundnut

  • Chapter
  • First Online:
Book cover Accelerated Plant Breeding, Volume 4

Abstract

Groundnut is an essential oilseed legume primarily cultivated in Asia, Africa, and the Americas. It is referred to as the “poor person’s almond/protein” which serves essential amino acids and nutrients required for good health. Besides its health benefits, it is affordable and easily cultivated in semi-arid tropics, and the idea of further enrichment of micronutrient and protein content may help in resolving the issue of hidden hunger especially in Asian and African countries. Even the World Health Organization has recommended the use of high-protein ready-to-use therapeutic food product, PlumpyNut, from groundnut. The availability of high oleic groundnut further provides opportunity for consumers to have affordable cooking oil with comparable quality benefits to olive oil. The current emphasis on varietal development is yield and oil content in addition to disease resistance, which should now also put emphasis in developing nutrition-rich groundnut varieties. Genomics-assisted breeding can accelerate the process of developing nutrition-rich groundnut; however, identification of genes and associated markers is the prerequisite genomic information. This chapter presents the current status on breeding, genetics, and genomics studies on nutritional traits in addition to some successful examples such as high oleic varieties wherein the marker application helped in breeding high oleic varieties faster and with more precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adeyeye EI (2010) Effect of cooking and roasting on the amino acid composition of raw groundnut (Arachis hypogaeaL.) seeds. Acta Sci Pol Technol Aliment 9:201–216

    CAS  Google Scholar 

  • Ali E, Zachariah R, Dahmane A, Van den Boogaard W, Shams Z, Akter T, Alders P, Manzi M, Allaouna M, Draguez B, Delchevalerie P (2013) Peanut-based ready-to-use therapeutic food: acceptability among malnourished children and community workers in Bangladesh. Public Health Action 3:128–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumugam MA (2015) Social protection for food security–a study of mid-day meal scheme in India. ACAD Int Multidiscip Res J 5:175–188

    Google Scholar 

  • Atherstone C, Grace D, Lindahl JF, Kang’ethe EK, Nelson F (2016) Assessing the impact of aflatoxin consumption on animal health and productivity. Afr J Food Agric Nutr Dev 16(3):10949–10966

    CAS  Google Scholar 

  • Bagade P, Vidyasagar PV, Parmar S, Reddy KS, Pandey MK (2020) Resveratrol content and its losses upon processing in select peanut accessions. Int J Food Sci Nutr 5:50–56

    Google Scholar 

  • Behl O (2017) Nutrition in under 5 children of different socio-economic statuses. Adv Sci Lett 23:1804–1806

    Article  Google Scholar 

  • Bera SK, Kamdar JH, Kasundra SV, Dash P, Maurya AK, Jasani MD, Chandrashekar AB, Manivannan N, Vasanthi RP, Dobariya KL, Pandey MK (2018a) Improving oil quality by altering levels of fatty acids through marker-assisted selection of ahfad2 alleles in peanut (Arachis hypogaea L.). Euphytica 214:1–5

    Article  CAS  Google Scholar 

  • Bera SK, Manohar SS, Variath MT, Chaudhari S, Yaduru S, Thankappan R, Narayana M, Kurapati S, Pandey MK, Sudini HK, Shanmugavel S (2018b) Assessing variability for disease resistance and nutritional quality traits in an interspecific collection of groundnut (Arachis hypogaea). Plant Breed 137:883–894

    Article  CAS  Google Scholar 

  • Bera SK, Kamdar JH, Kasundra SV, Patel SV, Jasani MD, Maurya AK, Dash P, Chandrashekar AB, Rani K, Manivannan N, Janila P (2019) Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits. PLoS One 14:0226252

    Article  Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446

    Article  CAS  PubMed  Google Scholar 

  • Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli SC, Ren L, Farmer AD, Pandey MK, Samoluk SS (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 51:877–884

    Article  CAS  PubMed  Google Scholar 

  • Bolton GE, Sanders TH (2002) Effect of roasting oil composition on the stability of roasted high-oleic peanuts. J Am Oil Chem Soc 79:129–132

    Article  CAS  Google Scholar 

  • Bonku R, Yu J (2020) Health aspects of peanuts as an outcome of its chemical composition. Food Sci Hum Well 9:21–30

    Article  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Li H, Pandey MK, Yang Q, Wang X, Garg V, Li H, Chi X, Doddamani D, Hong Y, Upadhyaya H (2016) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Nat Acad Sci 113:6785–6790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H, Li H, Wang J, Liu H, Li S, Pandey MK (2019) Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant 12:920–934

    Article  CAS  PubMed  Google Scholar 

  • Cheraghali AM, Yazdanpanah H, Doraki N, Abouhossain G, Hassibi M, Ali-Abadi S, Aliakbarpoor M, Amirahmadi M, Askarian A, Fallah N, Hashemi T (2007) Incidence of aflatoxins in Iran pistachio nuts. Food Chem Toxicol 45:812–816

    Article  CAS  PubMed  Google Scholar 

  • Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G, Ozias-Akins P (2011) Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4:110–117

    Article  CAS  Google Scholar 

  • Deshmukh D, Marathi B, Sudini HK, Variath MT, Chaudhari S, Manohar SS, Durgarani Ch V, Pandey MK, Pasupuleti J (2020) Combining high oleic acid trait and resistance to late leaf spot and rust diseases in groundnut (Arachis hypogaea L.). Front Genet 11:514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Commission-EC (2010) Commission regulation (EU) no 165/2010 of 26 February 2010, amending regulation (EC) no 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxin. OJEU 50:8–12

    Google Scholar 

  • FAOSTAT online database at https://www.fao.org/faostat/en/#data

  • FDA. FDA acknowledges qualified health claim linking early groundnut introduction and reduced risk of developing groundnut allergy. https://www.fda. gov/food/cfsan-constituent-updates/fda-acknowledges-qualified-health-claimlinking-early-groundnut-introduction-and-reduced-risk. Accessed on 23/12/2020 (2017)

  • Foster-Powell K, Holt SH, Brand-Miller JC (2002) International table of glycemic index and glycemic load values. Am J Clin Nutr 76:5–56

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Zhang D, Gleeson M, Zhang Y, Lin B, Hua S, Ding H, Frauen M, Li J, Qian W, Yu H (2017) Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping. Euphytica 213:1–15

    Article  CAS  Google Scholar 

  • Geulein I (2010) Antioxidant properties of resveratrol: a structure activity insight. Innov Food Sci Emerg Technol 11:210–218

    Article  Google Scholar 

  • Gomez Selvaraj M, Narayana M, Schubert AM, Ayers JL, Baring MR, Burow MD (2009) Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electron J Biotechnol 12:3–4

    Article  Google Scholar 

  • Gorbet DW, Knauft DA (2000) Registration of ‘SunOleic 97R’ peanut. Crop Sci 40:1190

    Article  Google Scholar 

  • Guo J, Liu N, Li W, Wu B, Chen H, Huang L, Chen W, Luo H, Zhou X, Jiang H (2021) Identification of two major loci and linked marker for oil content in peanut (Arachis hypogaea L.). Euphytica 217:1–11

    Article  Google Scholar 

  • Hake AA, Shirasawa K, Yadawad A, Sukruth M, Patil M, Nayak SN, Lingaraju S, Patil PV, Nadaf HL, Gowda MVC, Bhat RS (2017) Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.). PLoS One 12:0186113

    Article  Google Scholar 

  • Hasan MM, Cha M, Bajpai VK, Baek KH (2013) Production of a major stilbene phytoalexin, resveratrol in peanut (Arachis hypogaea) and peanut products: a mini review. Rev Environ Sci Biotechnol 12:209–221

    Article  CAS  Google Scholar 

  • Hoffpauir CL (1953) Peanut composition. Relation to processing and utilization. J Agric Food Chem 1:668–671

    Article  CAS  Google Scholar 

  • Hu XH, Zhang SZ, Miao HR, Cui FG, Shen Y, Yang WQ, Xu TT, Chen N, Chi XY, Zhang ZM, Chen J (2018) High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Sci Rep 8:1–10

    Google Scholar 

  • Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B, Jiang H (2015) Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet 128:1103–1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang B, Qi F, Sun Z, Miao L, Zhang Z, Liu H, Fang Y, Dong W, Tang F, Zheng Z, Zhang X (2019) Marker-assisted backcrossing to improve seed oleic acid content in four elite and popular peanut (Arachis hypogaea L.) cultivars with high oil content. Breed Sci 69:234–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal SZ, Jinap S, Pirouz AA, Faizal AA (2015) Aflatoxin M1 in milk and dairy products, occurrence and recent challenges: a review. Trends Food Sci Technol 46:110–119

    Article  CAS  Google Scholar 

  • Jadhav MP, Patil MD, Hampannavar M, Venkatesh PD, Shirasawa K, Pasupuleti J, Pandey MK, Varshney RK, Bhat RS (2021) Enhancing oleic acid content in two commercially released peanut varieties through marker-assisted backcross breeding. Crop Sci. 61: 2435–2443

    Google Scholar 

  • Janila P, Pandey MK, Shasidhar Y, Variath MT, Sriswathi M, Khera P, Manohar SS, Nagesh P, Vishwakarma MK, Mishra GP, Radhakrishnan T, ManivannanN DKL, Vasanthi RP, Varshney RK (2016) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:203–213

    Article  CAS  PubMed  Google Scholar 

  • Kamdar JH, Jasani MD, Bera SK, Georrge JJ (2020) Effect of selection response for yield related traits in early and later generations of groundnut (Arachis hypogaea L.). Crop Breed Appl Biotechnol 20. https://doi.org/10.1590/1984-70332020v20n2a31

  • Krishna TG, Pawar SE, Mitra R (1986) Variation and inheritance of the arachin polypeptides of groundnut (Arachis hypogaea L.). Theor Appl Genet 73:82–87

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Janila P, Vishwakarma MK, Khan AW, Manohar SS, Gangurde SS, Variath MT, Shasidhar Y, Pandey MK, Varshney RK (2020) Whole-genome resequencing-based QTL-seq identified candidate genes and molecular markers for fresh seed dormancy in groundnut. Plant Biotechnol J 18:992–1003

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Chen H, Huai D, Xia F, Huang L, Chen W, Wu B, Ren X, Luo H, Zhou X, Chen Y (2019) Four QTL clusters containing major and stable QTLs for saturated fatty acid contents in a dense genetic map of cultivated peanut (Arachis hypogaea L.). Mol Breed 39:1–4

    Article  Google Scholar 

  • Liu N, Guo J, Zhou X, Wu B, Huang L, Luo H, Chen Y, Chen W, Lei Y, Huang Y, Liao B (2020a) High-resolution mapping of a major and consensus quantitative trait locus for oil content to a~ 0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor Appl Genet 133:37–49

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Huang L, Chen W, Wu B, Pandey MK, Luo H, Zhou X, Guo J, Chen H, Huai D, Chen Y (2020b) Dissection of the genetic basis of oil content in Chinese peanut cultivars through association mapping. BMC Genet 21:1–12

    Article  Google Scholar 

  • Lopez Y, Nadaf HL, Smith OD, Connell JP, Reddy AS, Fritz AK (2000) Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet 101:1131–1138

    Article  CAS  Google Scholar 

  • Luo H, Guo J, Yu B, Chen W, Zhang H, Xiaojing Z, Yuning C, Huang L, Liu N, Ren X, Yan L (2021) Construction of ddRADseq-based high-density genetic map and identification of quantitative trait loci for trans-resveratrol content in Peanut seeds. Front Plant Sci 12:438

    Article  Google Scholar 

  • Moore KM (1999) High oleic acid peanut. U.S. Patent no. 5945578

    Google Scholar 

  • Mutegi CK, Ngugi HK, Hendriks SL, Jones RB (2009) Prevalence and factors associated with aflatoxin contamination of peanuts from Western Kenya. Int J Food Microbiol 130:27–34

    Article  CAS  PubMed  Google Scholar 

  • Nawade B, Bosamia TC, Thankappan R, Rathnakumar AL, Kumar A, Dobaria JR, Kundu R, Mishra GP (2016) Insights into the Indian peanut genotypes for ahFAD2 gene polymorphism regulating its oleic and linoleic acid fluxes. Front Plant Sci 7:1271

    Article  PubMed  PubMed Central  Google Scholar 

  • Nawade B, Mishra GP, Radhakrishnan T, Dodia SM, Ahmad S, Kumar A, Kumar A, Kundu R (2018) High oleic peanut breeding: achievements, perspectives, and prospects. Trends Food Sci Technol 78:107–119

    Article  CAS  Google Scholar 

  • Nawade B, Mishra GP, Radhakrishnan T, Sangh C, Dobariya JR, Kundu R (2019) Development of high oleic peanut lines through marker-assisted introgression of mutant ahFAD2 alleles and its fatty acid profiles under open-field and controlled conditions. 3 Biotech 9:1–6

    Article  Google Scholar 

  • Norden AJ, Gorbet DW, Knauft DA (1985) Registration of Sun runner Peanut. Crop Sci 25:1126

    Article  Google Scholar 

  • O’Bkeefe SF, Wiley VA, Knauft DA (1993) Comparison of oxidative stability of high-and normal-oleic peanut oils. J Am Oil Chem Soc 70:489–492

    Article  Google Scholar 

  • O’Byrne DJ, Knauft DA, Shireman RB (1997) Low fat, mono-saturated rich diets containing high oleic peanuts improve the serum lipoprotein profiles. Lipids 32:687–695

    Article  PubMed  Google Scholar 

  • Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley NA, Wang J, Holbrook CC, Culbreath AK (2014a) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet 15:1–14

    Article  Google Scholar 

  • Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshayee MS, Sriswathi M, Govil M, Kumar A, Gowda MVC, Sharma S, Hamidou F (2014b) Genomewide association studies for 50 agronomic traits in peanut using the reference set comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS One 9:105228

    Article  Google Scholar 

  • Pandey MK, Roorkiwal M, Singh VK, Ramalingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney RK (2016) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:455

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Kumar R, Pandey AK, Soni P, Gangurde SS, Sudini HK, Fountain JC, Liao B, Desmae H, Okori P, Chen X (2019) Mitigating aflatoxin contamination in groundnut through a combination of genetic resistance and post-harvest management practices. Toxins 11:315

    Article  CAS  PubMed Central  Google Scholar 

  • Pandey AK, Varshney RK, Sudini HK, Pandey MK (2019a) An improved enzyme-linked immunosorbent assay (ELISA) based protocol using seeds for detection of five major peanut allergens Ara h 1, Ara h 2, Ara h 3, Ara h 6, and Ara h 8. Front Nutr 6:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey AK, Sudini HK, Upadhyaya HD, Varshney RK, Pandey MK (2019b) Hypoallergen peanut lines identified through large-scale phenotyping of global diversity panel: providing hope toward addressing one of the major global food safety concerns. Front Genet 10:1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Pandey AK, Kumar R, Nwosu CV, Guo B, Wright GC, Bhat RS, Chen X, Bera SK, Yuan M, Jiang H, Faye I, Radhakrishnan T, Wang X, Liang X, Liao B, Zhang X, Varshney RK, Zhuang W (2020) Translational genomics for achieving higher genetic gains in groundnut. Theor Appl Genet 133:1679–1702

    Article  PubMed  PubMed Central  Google Scholar 

  • Pele M (2010) Peanut allergens. Rom Biotechnol Lett 15:5204–5212

    CAS  Google Scholar 

  • Perrone G, Haidukowski M, Stea G, Epifani F, Bandyopadhyay R, Leslie JF, Logrieco A (2014) Population structure and aflatoxin production by Aspergillus Sect. Flavi from maize in Nigeria and Ghana. Food Microbiol 41:52–59

    Article  CAS  PubMed  Google Scholar 

  • Ratnaparkhe MB, Lee TH, Tan X, Wang X, Li J, Kim C, Rainville LK, Lemke C, Compton RO, Robertson J, Gallo M (2014) Comparative and evolutionary analysis of major peanut allergen gene families. Genome Biol Evol 6:2468–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy KRN, Salleh B, Saad B, Abbas HK, Abel CA, Shier WT (2010) An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev 29:3–26

    Article  CAS  Google Scholar 

  • Romagnoli B, Menna V, Gruppioni N, Bergamini C (2007) Aflatoxins in spices, aromatic herbs, herb-teas and medicinal plants marketed in Italy. Food Control 18:697–701

    Article  CAS  Google Scholar 

  • Sales JM, Resurreccion AV (2014) Resveratrol in peanuts. Crit Rev Food Sci Nutr 54:734–770

    Article  CAS  PubMed  Google Scholar 

  • Sarvamangala C, Gowda MVC, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res 122:49–59

    Article  Google Scholar 

  • Savage GP, Keenan JI (1994) The composition and nutritive value of groundnut kernels. In the groundnut crop. Springer, Dordrecht, pp 173–213

    Google Scholar 

  • Shasidhar Y, Vishwakarma MK, Pandey MK, Janila P, Variath MT, Manohar SS, Nigam SN, Guo B, Varshney RK (2017) Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Front Plant Sci 8:794

    Article  PubMed  PubMed Central  Google Scholar 

  • Shasidhar Y, Variath MT, Vishwakarma MK, Manohar SS, Gangurde SS, Sriswathi M, Sudini HK, Dobariya KL, Bera SK, Radhakrishnan T, Pandey MK, Janila P, Varshney RK (2020) Improvement of three Indian popular groundnut varieties for foliar disease resistance and high oleic acid using SSR markers and SNP array in marker-assisted backcrossing. Crop J 8:1–15

    Article  Google Scholar 

  • Sherif SO, Salama EE, Abdel-Wahhab MA (2009) Mycotoxins and child health: the need for health risk assessment. Int J Hyg Environ Heal 212:347–368

    Article  CAS  Google Scholar 

  • Soni P, Gangurde SS, Ortega-Beltran A, Kumar R, Parmar S, Sudini HK, Lei Y, Ni X, Huai D, Fountain JC, Njoroge S (2020) Functional biology and molecular mechanisms of host-pathogen interactions for aflatoxin contamination in groundnut (Arachis hypogaea L.) and maize (Zea mays L.). Front Microbiol 11

    Google Scholar 

  • Sun Z, Qi F, Liu H, Qin L, Xu J, Shi L, Zhang Z, Miao L, Huang B, Dong W, Wang X (2021) QTL Mapping of quality related traits in peanut using whole-genome resequencing. https://doi.org/10.21203/rs.3.rs-138961/v1

  • UNICEF (2007) Available online at: http://www.unicef.org/infobycountry/niger_39675.html

  • US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory USDA National Nutrient Database for Standard Reference, Release 28. [(accessed on 20 december 2020)]; Version Current: September 2015, Slightly Revised May 2016. Available online: https://ndb.nal.usda.gov/ndb/

  • Viswanathan B (2014) Prevalence of undernutrition and evidence on interventions: challenges for India. Res Monogr 49. http://www.mse.ac.in/wp-content/uploads/2016/09/Monograph-29.pdf

  • Wang ML, Khera P, Pandey MK, Wang H, Qiao L, Feng S, Tonnis B, Barkley NA, Pinnow D, Holbrook CC, Culbreath AK (2015) Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLOS One 10:e0119454

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitney E, Rolfes SR (2018) Understanding nutrition. Cengage Learning

    Google Scholar 

  • WHO (World Health Organisation), Global Nutrition Report, 2018 (2020, February 9). https://globalnutritionreport.org/resources/nutrition-profiles/africa/#profile

  • Wilson JN, Chopra R, Baring MR, Selvaraj MG, Simpson CE, Chagoya J, Burow MD (2017) Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut (Arachis hypogaea L.). Trop Plant Biol 10:1–17

    Article  CAS  Google Scholar 

  • Wu F (2007) Measuring the economic impacts of Fusarium toxins in animal feeds. Anim Feed Sci Technol 137:363–374

    Article  CAS  Google Scholar 

  • Yamada T, Aibara S, Morita Y (1979) Dissociation association behavior of arachin between dimeric and monomeric forms. Agric Biol Chem 43:2549–2556

    Article  CAS  Google Scholar 

  • Yamaki T, Nagamine I, Fukumoto K, Yano T, Miyahara M, Sakurai H (2005) High oleic peanut oil modulates promotion stage in lung tumorigenesis of mice treated with methyl nitrosourea. Food Sci Technol Res 11:231–235

    Article  CAS  Google Scholar 

  • Yol E, Ustun R, Golukcu M, Uzun B (2017) Oil content, oil yield and fatty acid profile of groundnut germplasm in mediterranean climates. J Am Oil Chem Soc 94:787–804

    Article  CAS  Google Scholar 

  • Zhang H, Wang ML, Schaefer R, Dang P, Jiang T, Chen C (2019) GWAS and coexpression network reveal ionomic variation in cultivated Peanut. J Agric Food Chem 67:12026–12036

    Article  CAS  PubMed  Google Scholar 

  • Zhaoming Q, Xiaoying Z, Huidong Q, Dawei X, Xue H, Hongwei J, Zhengong Y, Zhanguo Z, Jinzhu Z, Rongsheng Z, Zhenbang H (2017) Identification and validation of major QTLs and epistatic interactions for seed oil content in soybeans under multiple environments based on a high-density map. Euphytica 213:1–14

    Article  Google Scholar 

  • Zhuang W, Chen H, Yang M, Wang J, Pandey MK, Zhang C, Chang W-C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C-N, Wang J, Deng Y, Wang D, Khan AW, Yang Q, Cai T-C, Bajaj P, Wu K, Guo B, Zhang X, Li J, Liang F, Hu J, Liao B, Liu S, Chitikineni A, Yan S, Zheng Y, Shan S, Liu Q, Xie D, Wang Z, Khan SA, Ali N, Zhao C, Li X, Luo Z, Zhang S, Zhuang R-R, Peng Z, Wang S-Y, Mamadou G, Zhuang Y, Zhao Z, Yu W, Xiong F, Quan W, Yuan M, Li Y, Zou H, Xia H, Zha L, Fan J, Yu J, Xie W, Yuan J, Chen K, Zhao S, Chu W, Chen Y, Sun P, Meng F, Zhuo T, Zhao Y, Li C-J, He G, Zhao Y, Wang C, Kavikishor PB, Pan R-L, Paterson A-H, Wang X, Ming R, Varshney RK (2019) The Arachis hypogaea genome elucidates legume karyotypes, polyploid evolution and crop domestication. Nat Genet 51:865–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support is acknowledged from the Department of Biotechnology (DBT) of Government of India, National Agricultural Science Fund (NASF) of Indian Council of Agricultural Research, India, and MARS Inc., USA. SP acknowledges the Council of Scientific and Industrial Research (CSIR), Govt. of India, for the award of Junior Research Fellowship for PhD research. The work reported in this article was undertaken as a part of the CGIAR Research Program on Grain Legumes and Dryland Cereals (GLDC). ICRISAT is a member of the CGIAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish K. Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parmar, S. et al. (2022). Recent Advances in Genetics, Genomics, and Breeding for Nutritional Quality in Groundnut. In: Gosal, S.S., Wani, S.H. (eds) Accelerated Plant Breeding, Volume 4. Springer, Cham. https://doi.org/10.1007/978-3-030-81107-5_4

Download citation

Publish with us

Policies and ethics