Skip to main content

Generating Custom Set Theories with Non-set Structured Objects

  • Conference paper
  • First Online:
Intelligent Computer Mathematics (CICM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12833))

Included in the following conference series:

Abstract

Set theory has long been viewed as a foundation of mathematics, is pervasive in mathematical culture, and is explicitly used by much written mathematics. Because arrangements of sets can represent a vast multitude of mathematical objects, in most set theories every object is a set. This causes confusion and adds difficulties to formalising mathematics in set theory. We wish to have set theory’s features while also having many mathematical objects not be sets. A generalized set theory (GST) is a theory that has pure sets and may also have non-sets that can have internal structure and impure sets that mix sets and non-sets. This paper provides a GST-building framework. We show example GSTs that have sets and also (1) non-set ordered pairs, (2) non-set natural numbers, (3) a non-set exception object that can not be inside another object, and (4) modular combinations of these features. We show how to axiomatize GSTs and how to build models for GSTs in other GSTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Our belief is based on tracing the expansion of uses of transrec3 in Isabelle/ZF.

References

  1. Aczel, P.: Generalised set theory. In: Logic, Language and Computation, vol. 1 of CSLI Lecture Notes (1996)

    Google Scholar 

  2. Bancerek, G., et al.: Mizar: state-of-the-art and beyond. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150, pp. 261–279. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-8_17

    Chapter  Google Scholar 

  3. Brown, C.E., Pak, K.: A tale of two set theories. In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617, pp. 44–60. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23250-4_4

    Chapter  Google Scholar 

  4. Brown, C.E., Smolka, G.: Extended first-order logic. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 164–179. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_13

    Chapter  MATH  Google Scholar 

  5. Dunne, C., Wells, J.B., Kamareddine, F.: Adding an abstraction barrier to ZF set theory. In: Benzmüller, C., Miller, B. (eds.) CICM 2020. LNCS (LNAI), vol. 12236, pp. 89–104. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6_6

    Chapter  Google Scholar 

  6. Farmer, W.M.: Formalizing undefinedness arising in calculus. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 475–489. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25984-8_35

    Chapter  Google Scholar 

  7. Farmer, W.M., Guttman, J.D., Javier Thayer, F.: Little theories. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 567–581. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55602-8_192

    Chapter  Google Scholar 

  8. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in Isabelle/HOL. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 131–146. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1_9

    Chapter  MATH  Google Scholar 

  9. Kolodynski, S.: IsarMathLib (2021). https://isarmathlib.org/. Accessed 3 Mar 2021

  10. Krauss, A.: https://www21.in.tum.de/~krauss/publication/2010-soft-types-note/. Adding soft types to Isabelle (2010)

  11. Krauss, A., Chen, J., Kappelmann, K.: Isabelle/Set. https://bitbucket.org/cezaryka/tyset/src/master/

  12. Kunčar, O., Popescu, A.: From types to sets by local type definitions in higher-order logic. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 200–218. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43144-4_13

    Chapter  Google Scholar 

  13. Kunčar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. J. Autom. Reasoning 62(4), 531–555 (2019)

    Article  MathSciNet  Google Scholar 

  14. Maddy, P.: What do we want a foundation to do? In: Centrone, S., Kant, D., Sarikaya, D. (eds.) Reflections on the Foundations of Mathematics. SL, vol. 407, pp. 293–311. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15655-8_13

    Chapter  Google Scholar 

  15. Megill, N., Wheeler, D.A.: Metamath: A Computer Language for Mathematical Proofs. LULU Press, Morrisville (2019)

    Google Scholar 

  16. Obua, S.: Partizan games in Isabelle/HOLZF. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.): ICTAC 2006. LNCS, vol. 4281. Springer, Heidelberg (2006). https://doi.org/10.1007/11921240

  17. Paulson, L.C.: The foundation of a generic theorem prover. J. Autom. Reasoning 5(3), 363–397 (1989)

    Article  MathSciNet  Google Scholar 

  18. Paulson, L.C.: Set theory for verification: I. From foundations to functions. J. Autom. Reasoning 11(3), 353–389 (1993)

    Article  MathSciNet  Google Scholar 

  19. Wiedijk, F., Zwanenburg, J.: First order logic with domain conditions. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 221–237. Springer, Heidelberg (2003). https://doi.org/10.1007/10930755_15

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciarán Dunne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dunne, C., Wells, J.B., Kamareddine, F. (2021). Generating Custom Set Theories with Non-set Structured Objects. In: Kamareddine, F., Sacerdoti Coen, C. (eds) Intelligent Computer Mathematics. CICM 2021. Lecture Notes in Computer Science(), vol 12833. Springer, Cham. https://doi.org/10.1007/978-3-030-81097-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81097-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81096-2

  • Online ISBN: 978-3-030-81097-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics