Skip to main content

Crypto Primer

  • 335 Accesses

Abstract

This chapter is a brief introduction to the specific cryptographic algorithms, protocols, and concepts that are needed for understanding the PETs described in the previous chapters of this book.

Keywords

  • Confidentiality
  • Integrity
  • Authenticity
  • Cryptographic strength
  • Security proof

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-81043-6_11
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-81043-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)

References

  • C. Adams, S. Lloyd, Understanding PKI: Concepts, Standards, and Deployment Considerations, 2nd edn. (Addison-Wesley, Boston, 2003)

    Google Scholar 

  • J. H. Ahn, D. Boneh, J. Camenisch, S. Hohenberger, A. Shelat, and B. Waters, Computing on authenticated data. Proceedings of the Theory of Cryptography Conference, Springer LNCS 7194, pp. 1–20, (2012, 19–21 March)

    Google Scholar 

  • N. Attrapadung, B. Libert, and T. Peters, Computing on authenticated data: New privacy definitions and constructions. Advances in Cryptology: Proceedings of Asiacrypt, Springer LNCS 7658, 2–6 (2012, December)

    Google Scholar 

  • D. J. Bernstein, ChaCha, a variant of Salsa20. (2008, 28 January)

    Google Scholar 

  • D. J. Bernstein, Extending the Salsa20 nonce. (2011, 4 February)

    Google Scholar 

  • D. J. Bernstein and T. Lange, Faster Addition and Doubling on Elliptic Curves. (2007, 6 September)

    Google Scholar 

  • G. R. Blakley, Safeguarding cryptographic keys. AFIPS International Workshop on Managing Requirements Knowledge, pp. 313–317, (1979)

    Google Scholar 

  • D. Boneh and M. Franklin, Identity-based encryption from the Weil pairing. Advances in Cryptology: Proceedings of Crypto 2001, Springer LNCS 2139, pp. 213–229, (2001)

    Google Scholar 

  • G. Brassard, C. Crépeau, and J.-M. Robert, All-or-nothing disclosure of secrets. Advances in Cryptology: Proceedings of Crypto ‘86, Springer LNCS 263, pp. 234–238 (1986)

    Google Scholar 

  • D. R. L. Brown, SEC 2: Recommended Elliptic Curve Domain Parameters. Standards for Efficient Cryptography 2 (SEC 2), Version 2.0, 37pp, (2010, 27 January)

    Google Scholar 

  • M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn, Malleable signatures: New definitions and delegatable anonymous credentials. IEEE 27th Computer Security Foundations Symposium, Vienna, pp. 199–213, (2014)

    Google Scholar 

  • D. Chaum, Blind Signatures for Untraceable Payments. Advances in Cryptology: Proceedings of Crypto ‘82 , pp. 199–203 (1983)

    Google Scholar 

  • L. Chen, Recommendation for key derivation using pseudorandom functions. US National Institute of Standards and Technology, Computer Security Division, NIST Special Publication 800-108, (2009, October)

    Google Scholar 

  • C. Cocks, An identity based encryption scheme based on quadratic residues. Proceedings of the 8th IMA International Conference on Cryptology and Coding, Sepringer LNCS 2260, pp. 360–363 (2001)

    Google Scholar 

  • W. Dean, Computational Complexity Theory. The Stanford Encyclopedia of Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.), 2016

    Google Scholar 

  • W. Diffie, M.E. Hellman, New directions in cryptography. IEEE Trans. Inf. Theory IT-22(6), 644–654 (1976)

    MathSciNet  CrossRef  Google Scholar 

  • W. Diffie, P.C. van Oorschot, M.J. Wiener, Authentication and authenticated key exchanges. Des. Codes Crypt. 2(2), 107–125 (1992)

    MathSciNet  CrossRef  Google Scholar 

  • M. Dworkin, Recommendation for Block Cipher Modes of Operation: Methods and Techniques. US National Institute of Standards and Technology, Computer Security Division, NIST Special Publication 800-38A, (2001, December)

    Google Scholar 

  • M. Dworkin, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC. US National Institute of Standards and Technology, Computer Security Division, NIST Special Publication 800-38D, November 2007

    Google Scholar 

  • H.M. Edwards, A normal form for elliptic curves. Bulletin of the American Mathematical Society 44(3), 393–422 (2007)

    MathSciNet  CrossRef  Google Scholar 

  • S. Even, O. Goldreich, A. Lempel, A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)

    MathSciNet  CrossRef  Google Scholar 

  • J. Fan, C. Adams, Using Malleable Signatures to Allow Multi-Show Capability in Digital Credentials. International Journal of Sensor Networks and Data Communications 7(4), 6 (2018)

    CrossRef  Google Scholar 

  • A. Fiat and M. Naor, Broadcast encryption. Advances in cryptology: Proceedings of crypto ‘93, Springer LNCS 773, pp. 480–491, 1994

    Google Scholar 

  • FIPS: Federal Information Processing Standards Publication Series, “Data Encryption Standard (DES)”, FIPS PUB 46, 15 January 1977 (reaffirmed as FIPS PUB 46–3 on 25 October 1999)

    Google Scholar 

  • FIPS: Federal Information Processing Standards Publication Series, Digital Signature Standard (DSS). FIPS PUB 186–1, 15 December 1998 (reaffirmed as FIPS PUB 186–4 in July 2013)

    Google Scholar 

  • FIPS: Federal Information Processing Standards Publication Series, Advanced Encryption Standard (AES). FIPS PUB 197, (2001, 26 November)

    Google Scholar 

  • FIPS: Federal Information Processing Standards Publication Series, “Secure Hash Standard (SHS)”, FIPS PUB 180–4, (2015, August

    Google Scholar 

  • C. Gentry, Fully Homomorphic Encryption Using Ideal Lattices. 41st ACM Symposium on Theory of Computing, pp. 169–178, (2009, May)

    Google Scholar 

  • O. Goldreich, S. Micali, and A. Wigderson, Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. Proceedings of the 27th Annual IEEE Symposium on Foundations of Computer Science, pp. 174–187, (1986, 27–29 October)

    Google Scholar 

  • S. Goldwasser and S. Micali, Probabilistic encryption & how to play mental poker keeping secret all partial information. 14th Annual ACM Symposium on Theory of Computing, pp. 365–377, (1982, May)

    Google Scholar 

  • S. Goldwasser, S. Micali, Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    MathSciNet  CrossRef  Google Scholar 

  • S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems. Soc. Indust. Appl. Mathematics (SIAM) J. Comput. 18(1), 186–208 (1989)

    MathSciNet  MATH  Google Scholar 

  • R. Housley, T. Polk, Planning for PKI: Best Practices Guide for Deploying Public Key Infrastructure (Wiley, New York, 2001)

    Google Scholar 

  • J. Katz, Y. Lindell, Introduction to Modern Cryptography, 2nd edn. (CRC Press, Taylor & Francis Group, 2015)

    MATH  Google Scholar 

  • A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography. CRC Press (1996) (5th printing: 2001)

    Google Scholar 

  • M. Naor and M. Yung, Public-key cryptosystems provably secure against chosen ciphertext attacks. 22nd Annual ACM Symposium on Theory of Computing, pp. 427–437, (1990, April)

    Google Scholar 

  • T. P. Pedersen, Non-interactive and information-theoretic secure verifiable secret sharing. Advances in Cryptology: Proceedings of Crypto ‘91 , pp. 129–140, (1992)

    Google Scholar 

  • PKCS: RSA Laboratories, “PKCS #1 v2.1: RSA Cryptography Standard”, RSA Security Inc. Public-Key Cryptography Standards (PKCS), (2002, 14 June)

    Google Scholar 

  • M. O. Rabin, How to Exchange Secrets by Oblivious Transfer. Technical Report TR-81, Aiken Computation Laboratory, Harvard University, 20 (1981)

    Google Scholar 

  • C. Rackoff and D. R. Simon, Non-interactive zero-knowledge proof of knowledge and chosen Ciphertext attack. Advances in Cryptology: Proceedings of Crypto ‘91, Springer LNCS 576, pp. 433–444 (1992)

    Google Scholar 

  • R. L. Rivest, The MD5 message-digest algorithm. Internet Engineering Task Force (IETF) Request for Comments RFC 1321 (1992)

    Google Scholar 

  • R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978a)

    MathSciNet  CrossRef  Google Scholar 

  • R. L. Rivest, L. Adleman, and M. L. Dertouzos, On data banks and privacy homomorphisms. Foundations of Secure Computation, Academia Press, pp. 169–179, (1978b)

    Google Scholar 

  • A. Sahai and B. Waters, Fuzzy identity based encryption. Advances in Cryptology – Proceedings of Eurocrypt, Springer LNCS 3494, pp. 457–473 (2005)

    Google Scholar 

  • B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn. (Wiley, 1996)

    MATH  Google Scholar 

  • A. Shamir, How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    MathSciNet  CrossRef  Google Scholar 

  • A. Shamir, Identity-based cryptosystems and signature schemes. Advances in Cryptology: Proceedings of Crypto 84, Springer LNCS 196, pp. 47–53 (1985)

    Google Scholar 

  • M. Sipser, Introduction to the Theory of Computation, 3rd edn. (Thomson South-Western, 2012)

    MATH  Google Scholar 

  • W. Stallings, Cryptography and Network Security: Principles and Practice, 6th edn. (Pearson, 2014)

    Google Scholar 

  • D.R. Stinson, M.B. Patterson, Cryptography: Theory and Practice (CRC Press, Taylor & Francis Group, 2018)

    CrossRef  Google Scholar 

  • W.-G. Tzeng, Efficient 1-out-n oblivious transfer schemes. International Workshop on Public Key Cryptography, Springer LNCS 2274, pp. 159–171 (2002)

    Google Scholar 

  • S. Vaudenay, A Classical Introduction to Modern Cryptography (Springer, 2005)

    Google Scholar 

  • B. Waters, “Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure Realization”, Cryptology ePrint Archive, 2008/290, 27 June 2008 (Last Revised 2010, 20 December)

    Google Scholar 

  • Wikipedia, Computational Complexity Theory, (2021, 13 March)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Adams, C. (2021). Crypto Primer. In: Introduction to Privacy Enhancing Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-81043-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81043-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81042-9

  • Online ISBN: 978-3-030-81043-6

  • eBook Packages: Computer ScienceComputer Science (R0)