Skip to main content

Reconstructing the Last Universal Common Ancestor

  • 479 Accesses

Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)

Abstract

There is general agreement that bacteria, archaea, and eukarya share common ancestry. However, tracing back extant lineages to reconstruct the ancestral gene set of the three domains has proven to be non-trivial, as there is little unambiguous signal this far back in time. In this chapter, I explain the basic principles behind reconstruction of the Last Universal Common Ancestor (LUCA) and summarise a few of the challenges associated with reconstruction. Finally, I consider whether a mid-resolution LUCA might be the most achievable goal, particularly from the perspective of the classes of chemistry available to early life.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-81039-9_9
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-81039-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7

References

  • Andam, C.P., Williams, D., Gogarten, J.P.: Natural taxonomy in light of horizontal gene transfer. Biol. Philos. 25(4), 589–602 (2010)

    Google Scholar 

  • Beringer, M., Rodnina, M.V.: The ribosomal peptidyl transferase. Mol. Cell. 26(3), 311–321 (2007)

    Google Scholar 

  • Berkemer, S.J., McGlynn, S.E.: A new analysis of archaea-bacteria domain separation: variable phylogenetic distance and the tempo of early evolution. Mol. Biol. Evol. 37(8), 2332–2340 (2020)

    Google Scholar 

  • Boerlijst, M.C., Hogeweg, P.: Spiral wave structure in pre-biotic evolution: Hypercycles stable against parasites. Phys. D. 48(1), 17–28 (1991)

    MATH  Google Scholar 

  • Boussau, B., Blanquart, S., Necsulea, A., Lartillot, N., Gouy, M.: Parallel adaptations to high temperatures in the Archaean eon. Nature. 456(7224), 942–945 (2008)

    ADS  Google Scholar 

  • Brindefalk, B., Dessailly, B.H., Yeats, C., Orengo, C., Werner, F., Poole, A.M.: Evolutionary history of the TBP-domain superfamily. Nucleic Acids Res. 41(5), 2832–2845 (2013)

    Google Scholar 

  • Caetano-Anollés, G., Caetano-Anollés, D.: An evolutionarily structured universe of protein architecture. Genome Res. 13(7), 1563–1571 (2003)

    Google Scholar 

  • Caetano-Anollés, G., Kim, H.S., Mittenthal, J.E.: The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc. Natl. Acad. Sci. USA. 104(22), 9358–9363 (2007)

    ADS  Google Scholar 

  • Caetano-Anollés, G., Mittenthal, J.E., Caetano-Anollés, D., Kim, K.M.: A calibrated chronology of biochemistry reveals a stem line of descent responsible for planetary biodiversity. Front. Genet. 5, 306 (2014)

    Google Scholar 

  • Cermakian, N., Cedergren, R.: Modified nucleotides always were: an evolutionary model. In: Grosjean, H., Benne, R. (eds.) Modification and Editing of RNA, pp. 535–541. ASM Press, Washington, DC (1998)

    Google Scholar 

  • Ciccarelli, F.D., Doerks, T., von Mering, C., Creevey, C.J., Snel, B., Bork, P.: Toward automatic reconstruction of a highly resolved tree of life. Science. 311(5765), 1283–1287 (2006)

    ADS  Google Scholar 

  • Coleman, G.A., Pancost, R.D., Williams, T.A.: Investigating the origins of membrane phospholipid biosynthesis genes using outgroup-free rooting. Genome Biol. Evol. 11(3), 883–898 (2019)

    Google Scholar 

  • Copley, S.D.: Moonlighting is mainstream: paradigm adjustment required. BioEssays. 34(7), 578–588 (2012)

    Google Scholar 

  • Dagan, T., Martin, W.: The tree of one percent. Genome Biol. 7(10), 118 (2006)

    Google Scholar 

  • Dagan, T., Roettger, M., Bryant, D., Martin, W.: Genome networks root the tree of life between prokaryotic domains. Genome Biol. Evol. 2, 379–392 (2010)

    Google Scholar 

  • Doolittle, W.F.: Phylogenetic classification and the universal tree. Science. 284(5423), 2124–2129 (1999)

    Google Scholar 

  • Doolittle, W.F.: W. Ford Doolittle. Curr. Biol. 14(5), R176–R177 (2004)

    Google Scholar 

  • Forterre, P.: Displacement of cellular proteins by functional analogues from plasmids or viruses could explain puzzling phylogenies of many DNA informational proteins. Mol. Microbiol. 33(3), 457–465 (1999)

    Google Scholar 

  • Forterre, P.: Genomics and early cellular evolution. The origin of the DNA world. C. R. Acad. Sci. III. 324(12), 1067–1076 (2001)

    Google Scholar 

  • Forterre, P.: The origin of DNA genomes and DNA replication proteins. Curr. Opin. Microbiol. 5(5), 525–532 (2002)

    Google Scholar 

  • Forterre, P.: The universal tree of life: an update. Front. Microbiol. 6, 717 (2015)

    Google Scholar 

  • Forterre, P., Grosjean, H.: The Interplay Between RNA and DNA Modifications: Back to the RNA World. Molecular Biology Intelligence Unit Landes Bioscience. Springer, Austin, TX (2009)

    Google Scholar 

  • Forterre, P., Philippe, H.: Where is the root of the universal tree of life? BioEssays. 21(10), 871–879 (1999)

    Google Scholar 

  • Forterre, P., Filée, J., Myllykallio, H.: Origin and evolution of DNA and DNA replication machineries. In: de Pouplana, L.R. (ed.) The Genetic Code and the Origin of Life. Landes Bioscience, Georgetown, TX (2004)

    Google Scholar 

  • Fullmer, M.S., Soucy, S.M., Gogarten, J.P.: The pan-genome as a shared genomic resource: mutual cheating, cooperation and the black queen hypothesis. Front. Microbiol. 6, 728 (2015)

    Google Scholar 

  • Galtier, N., Tourasse, N., Gouy, M.: A nonhyperthermophilic common ancestor to extant life forms. Science. 283(5399), 220–221 (1999)

    Google Scholar 

  • Gardner, P.P., Bateman, A., Poole, A.M.: SnoPatrol: how many snoRNA genes are there? J. Biol. 9(1), 4 (2010)

    Google Scholar 

  • Gaspin, C., Cavaille, J., Erauso, G., Bachellerie, J.P.: Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J. Mol. Biol. 297(4), 895–906 (2000)

    Google Scholar 

  • Glansdorff, N., Xu, Y., Labedan, B.: The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol. Direct. 3, 29 (2008)

    Google Scholar 

  • Gogarten, J.P., Kibak, H., Dittrich, P., Taiz, L., Bowman, E.J., Bowman, B.J., et al.: Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc. Natl. Acad. Sci. USA. 86(17), 6661–6665 (1989)

    ADS  Google Scholar 

  • Goldman, A.D., Baross, J.A., Samudrala, R.: The enzymatic and metabolic capabilities of early life. PLoS One. 7(9), e39912 (2012)

    ADS  Google Scholar 

  • Goldman, A.D., Bernhard, T.M., Dolzhenko, E., Landweber, L.F.: LUCApedia: a database for the study of ancient life. Nucleic Acids Res. 41(Database issue), D1079–D1082 (2013)

    Google Scholar 

  • Gribaldo, S., Brochier-Armanet, C.: Evolutionary relationships between archaea and eukaryotes. Nat. Ecol. Evol. 4(1), 20–21 (2020)

    Google Scholar 

  • Gribaldo, S., Poole, A.M., Daubin, V., Forterre, P., Brochier-Armanet, C.: The origin of eukaryotes and their relationship with the archaea: are we at a phylogenomic impasse? Nat. Rev. Microbiol. 8(10), 743–752 (2010)

    Google Scholar 

  • Hacker, J., Carniel, E.: Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep. 2(5), 376–381 (2001)

    Google Scholar 

  • Harris, J.K., Kelley, S.T., Spiegelman, G.B., Pace, N.R.: The genetic core of the universal ancestor. Genome Res. 13, 407–412 (2003)

    Google Scholar 

  • Hoeppner, M.P., Poole, A.M.: Comparative genomics of eukaryotic small nucleolar RNAs reveals deep evolutionary ancestry amidst ongoing intragenomic mobility. BMC Evol. Biol. 12, 183 (2012)

    Google Scholar 

  • Hoeppner, M.P., Gardner, P.P., Poole, A.M.: Comparative analysis of RNA families reveals distinct repertoires for each domain of life. PLoS Comput. Biol. 8(11), e1002752 (2012)

    ADS  Google Scholar 

  • Hogeweg, P., Takeuchi, N.: Multilevel selection in models of prebiotic evolution: compartments and spatial self-organization. Orig. Life Evol. Biosph. 33(4–5), 375–403 (2003)

    ADS  Google Scholar 

  • Illergård, K., Ardell, D.H., Elofsson, A.: Structure is three to ten times more conserved than sequence: a study of structural response in protein cores. Proteins. 77(3), 499–508 (2009)

    Google Scholar 

  • Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S., Miyata, T.: Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl. Acad. Sci. USA. 86(23), 9355–9359 (1989)

    ADS  Google Scholar 

  • Jain, R., Rivera, M.C., Lake, J.A.: Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. USA. 96(7), 3801–3806 (1999)

    ADS  Google Scholar 

  • Jeffares, D.C., Poole, A.M., Penny, D.: Relics from the RNA world. J. Mol. Evol. 46(1), 18–36 (1998)

    ADS  Google Scholar 

  • Jékely, G.: Did the last common ancestor have a biological membrane? Biol. Direct. 1, 35 (2006)

    Google Scholar 

  • Jensen, R.A.: Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30, 409–425 (1976)

    Google Scholar 

  • Kim, K.M., Caetano-Anollés, G.: Emergence and evolution of modern molecular functions inferred from phylogenomic analysis of ontological data. Mol. Biol. Evol. 27(7), 1710–1733 (2010)

    Google Scholar 

  • King, T.H., Liu, B., McCully, R.R., Fournier, M.J.: Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol. Cell. 11(2), 425–435 (2003)

    Google Scholar 

  • Koonin, E.V.: Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol. 1(2), 127 (2003)

    MathSciNet  Google Scholar 

  • Koonin, E.V., Martin, W.: On the origin of genomes and cells within inorganic compartments. Trends Genet. 21(12), 647–654 (2005)

    Google Scholar 

  • Koonin, E.V., Mushegian, A.R., Bork, P.: Non-orthologous gene displacement. Trends Genet. 12(9), 334–336 (1996)

    Google Scholar 

  • Koumandou, V.L., Wickstead, B., Ginger, M.L., van der Giezen, M., Dacks, J.B., Field, M.C.: Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48(4), 373–396 (2013)

    Google Scholar 

  • Kyrpides, N., Overbeek, R., Ouzounis, C.: Universal protein families and the functional content of the last universal common ancestor. J. Mol. Evol. 49(4), 413–423 (1999)

    ADS  Google Scholar 

  • Lafontaine, D.L., Tollervey, D.: Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem. Sci. 23(10), 383–388 (1998)

    Google Scholar 

  • Lapierre, P., Gogarten, J.P.: Estimating the size of the bacterial pan-genome. Trends Genet. 25(3), 107–110 (2009)

    Google Scholar 

  • Lawrence, J.G., Roth, J.R.: Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics. 143(4), 1843–1860 (1996)

    Google Scholar 

  • Leipe, D.D., Aravind, L., Koonin, E.V.: Did DNA replication evolve twice independently? Nucleic Acids Res. 27(17), 3389–3401 (1999)

    Google Scholar 

  • Lindgreen, S., Umu, S.U., Lai, A.S., Eldai, H., Liu, W., McGimpsey, S., et al.: Robust identification of noncoding RNA from transcriptomes requires phylogenetically-informed sampling. PLoS Comput. Biol. 10(10), e1003907 (2014)

    Google Scholar 

  • Lundin, D., Gribaldo, S., Torrents, E., Sjöberg, B.M., Poole, A.M.: Ribonucleotide reduction - horizontal transfer of a required function spans all three domains. BMC Evol. Biol. 10, 383 (2010)

    Google Scholar 

  • Lundin, D., Poole, A.M., Sjöberg, B.M., Hogbom, M.: Use of structural phylogenetic networks for classification of the ferritin-like superfamily. J. Biol. Chem. 287(24), 20565–20575 (2012)

    Google Scholar 

  • Malik, A.J., Poole, A.M., Allison, J.R.: Structural phylogenetics with confidence. Mol. Biol. Evol. 37(9), 2711–2726 (2020)

    Google Scholar 

  • Myllykallio, H., Lipowski, G., Leduc, D., Filee, J., Forterre, P., Liebl, U.: An alternative flavin-dependent mechanism for thymidylate synthesis. Science. 297(5578), 105–107 (2002)

    ADS  Google Scholar 

  • Neumann, N., Lundin, D., Poole, A.M.: Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PLoS One. 5(10), e13241 (2010)

    ADS  Google Scholar 

  • O’Brien, P.J., Herschlag, D.: Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6(4), R91–R105 (1999)

    Google Scholar 

  • Ofengand, J., Bakin, A.: Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. J. Mol. Biol. 266(2), 246–268 (1997)

    Google Scholar 

  • Omer, A.D., Lowe, T.M., Russell, A.G., Ebhardt, H., Eddy, S.R., Dennis, P.P.: Homologs of small nucleolar RNAs in archaea. Science. 288(5465), 517–522 (2000)

    ADS  Google Scholar 

  • Penny, D., Poole, A.: The nature of the last universal common ancestor. Curr. Opin. Genet. Dev. 9(6), 672–677 (1999)

    Google Scholar 

  • Penny, D., Hoeppner, M.P., Poole, A.M., Jeffares, D.C.: An overview of the introns-first theory. J. Mol. Evol. 69(5), 527–540 (2009)

    ADS  Google Scholar 

  • Peretó, J., López-García, P., Moreira, D.: Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci. 29(9), 469–477 (2004)

    Google Scholar 

  • Poole, A.M.: Getting from an RNA world to modern cells just got a little easier. BioEssays. 28(2), 105–108 (2006)

    Google Scholar 

  • Poole, A.M.: Horizontal gene transfer and the earliest stages of the evolution of life. Res. Microbiol. 160(7), 473–480 (2009)

    Google Scholar 

  • Poole, A.M., Logan, D.T.: Modern mRNA proofreading and repair: clues that the last universal common ancestor possessed an RNA genome? Mol. Biol. Evol. 22(6), 1444–1455 (2005)

    Google Scholar 

  • Poole, A.M., Jeffares, D.C., Penny, D.: The path from the RNA world. J. Mol. Evol. 46(1), 1–17 (1998)

    ADS  Google Scholar 

  • Poole, A., Penny, D., Sjöberg, B.M.: Confounded cytosine! Tinkering and the evolution of DNA. Nat. Rev. Mol. Cell Biol. 2(2), 147–151 (2001)

    Google Scholar 

  • Poole, A.M., Phillips, M.J., Penny, D.: Prokaryote and eukaryote evolvability. Biosystems. 69(2–3), 163–185 (2003)

    Google Scholar 

  • Poole, A.M., Lundin, D., Rytkönen, K.T.: The evolution of early cellular systems viewed through the lens of biological interactions. Front. Microbiol. 6, 1144 (2015)

    Google Scholar 

  • Raymann, K., Brochier-Armanet, C., Gribaldo, S.: The two-domain tree of life is linked to a new root for the archaea. Proc. Natl. Acad. Sci. USA. 112(21), 6670–6675 (2015)

    ADS  Google Scholar 

  • Rivera, M.C., Jain, R., Moore, J.E., Lake, J.A.: Genomic evidence for two functionally distinct gene classes. Proc. Natl. Acad. Sci. USA. 95(11), 6239–6244 (1998)

    ADS  Google Scholar 

  • Shimada, H., Yamagishi, A.: Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids. Biochemistry. 50(19), 4114–4120 (2011)

    Google Scholar 

  • Shutt, T.E., Gray, M.W.: Bacteriophage origins of mitochondrial replication and transcription proteins. Trends Genet. 22(2), 90–95 (2006)

    Google Scholar 

  • Skophammer, R.G., Servin, J.A., Herbold, C.W., Lake, J.A.: Evidence for a gram-positive, eubacterial root of the tree of life. Mol. Biol. Evol. 24(8), 1761–1768 (2007)

    Google Scholar 

  • Snel, B., Bork, P., Huynen, M.A.: Genome phylogeny based on gene content. Nat. Genet. 21(1), 108–110 (1999)

    Google Scholar 

  • Soo, V.W., Hanson-Manful, P., Patrick, W.M.: Artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli. Proc. Natl. Acad. Sci. USA. 108(4), 1484–1489 (2011)

    ADS  Google Scholar 

  • Spang, A., Saw, J.H., Jorgensen, S.L., Zaremba-Niedzwiedzka, K., Martijn, J., Lind, A.E., et al.: Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 521(7551), 173–179 (2015)

    ADS  Google Scholar 

  • Stern, A., Mayrose, I., Penn, O., Shaul, S., Gophna, U., Pupko, T.: An evolutionary analysis of lateral gene transfer in thymidylate synthase enzymes. Syst. Biol. 59(2), 212–225 (2010)

    Google Scholar 

  • Szathmáry, E., Demeter, L.: Group selection of early replicators and the origin of life. J. Theor. Biol. 128(4), 463–486 (1987)

    ADS  Google Scholar 

  • Vetsigian, K., Woese, C., Goldenfeld, N.: Collective evolution and the genetic code. Proc. Natl. Acad. Sci. USA. 103(28), 10696–10701 (2006)

    ADS  Google Scholar 

  • Villanueva, L., von Meijenfeldt, F.A.B., Westbye, A.B., Yadav, S., Hopmans, E.C., Dutilh, B.E., et al.: Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids. ISME J. 15, 168–182 (2020)

    Google Scholar 

  • Warner, J.R., McIntosh, K.B.: How common are extraribosomal functions of ribosomal proteins? Mol. Cell. 34(1), 3–11 (2009)

    Google Scholar 

  • Weiss, M.C., Sousa, F.L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., et al.: The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1(9), 16116 (2016)

    Google Scholar 

  • White 3rd., H.B.: Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 7(2), 101–104 (1976)

    ADS  Google Scholar 

  • Williams, T.A., Cox, C.J., Foster, P.G., Szollosi, G.J., Embley, T.M.: Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 4(1), 138–147 (2020)

    Google Scholar 

  • Woese, C.: The universal ancestor. Proc. Natl. Acad. Sci. USA. 95(12), 6854–6859 (1998)

    ADS  Google Scholar 

  • Woese, C.R., Fox, G.E.: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA. 74(11), 5088–5090 (1977)

    ADS  Google Scholar 

  • Woese, C.R., Kandler, O., Wheelis, M.L.: Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc. Natl. Acad. Sci. USA. 87(12), 4576–4579 (1990)

    ADS  Google Scholar 

  • Wool, I.G.: Extraribosomal functions of ribosomal proteins. Trends Biochem. Sci. 21(5), 164–165 (1996)

    Google Scholar 

  • Zaremba-Niedzwiedzka, K., Caceres, E.F., Saw, J.H., Backstrom, D., Juzokaite, L., Vancaester, E., et al.: Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature. 541(7637), 353–358 (2017)

    ADS  Google Scholar 

  • Zintzaras, E., Santos, M., Szathmáry, E.: “Living” under the challenge of information decay: the stochastic corrector model vs. hypercycles. J. Theor. Biol. 217(2), 167–181 (2002)

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony M. Poole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Poole, A.M. (2021). Reconstructing the Last Universal Common Ancestor. In: Neubeck, A., McMahon, S. (eds) Prebiotic Chemistry and the Origin of Life. Advances in Astrobiology and Biogeophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-81039-9_9

Download citation