Skip to main content

First Steps Towards Molecular Evolution

  • 455 Accesses

Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)

Abstract

A fascinating question of abiogenesis is how simple organic molecules have developed into complex biological systems that are capable of being altered by evolutionary mechanisms. The fundamental question is what complexity is required to trigger evolution at the molecular level, i.e. molecules undergo their synthesis, selection and mutation leading to selectivity and replication. This question is closely linked to processes that lead to spontaneous symmetry breaking (chirogenesis) and ultimately to homochirality. This chapter focuses on mechanisms that lead to evolutionary systems at the level of organic molecules and open the possibility of chirogenesis. On the one hand, this is shown by the emergence of prebiotic organocatalysts and, on the other hand, a mechanism is discussed that leads naturally to the preferential formation of (deoxy)ribonucleosides and nucleotides. This creates the basis for self-sustaining and information-storing structures that can undergo dynamic alterations.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-81039-9_7
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-81039-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6
Fig. 7.7
Fig. 7.8
Fig. 7.9

References

  • Anders, E., Hayatsu, R., Studier, M.H.: Organic compounds in meteorites. Science. 182, 781–790 (1973)

    ADS  Google Scholar 

  • Anh, N.T., Eisenstein, O.: Induction asymetrique 1–2: comparaison ab initio des modeles de Cram, de Cornforth, de Karabatsos et de Felkin. Tetrahedron Asymmetry. 17, 155–158 (1976)

    Google Scholar 

  • Baldwin, J.E.: Rules for ring closure. J. Chem. Soc. Chem. Commun. 1976, 734–736 (1976)

    Google Scholar 

  • Becker, S., Thoma, I., Deutsch, A., Gehrke, T., Mayer, P., Zipse, H., Carell, T.: A high-yielding, strictly regioselective prebiotic purine nucleoside formation pathway. Science. 352, 833–836 (2016)

    ADS  Google Scholar 

  • Becker, S., Schneider, C., Okamura, H., Crisp, A., Amatov, T., Dejmek, M., Carell, T.: Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nat. Commun. 9, 163 (2018)

    ADS  Google Scholar 

  • Becker, S., Feldmann, J., Wiedemann, S., Okamura, H., Schneider, C., Iwan, K., Crisp, A., Rossa, M., Amatov, T., Carell, T.: Unified prebiotically plausible synthesis of pyrimidine and purine rna ribonucleotides. Science. 366, 76–82 (2019)

    ADS  Google Scholar 

  • Benner, S.A., Bell, E.A., Biondi, E., Brasser, R., Carell, T., Kim, H.-J., Mojzsis, S.J., Omran, A., Pasek, M.A., Trail, D.: When did life likely emerge on earth in an RNA-first process? ChemSystemsChem. (2019). https://doi.org/10.1002/syst.202000009

  • Butlerow, A.: Bildung einer zuckerartigen substanz durch synthese. Liebigs Ann. 120, 295–298 (1861)

    Google Scholar 

  • Cannizzaro, S.: Über den der Benzoesäure entsprechenden Alkohol. Justus Liebigs Ann. Chem. 88, 129–130 (1853)

    Google Scholar 

  • Closs, A.C., Fuks, E., Bechtel, M., Trapp, O.: Prebiotically plausible organocatalysts enabling a selective photoredox α-alkylation of aldehydes on the early earth. Chem. Eur. J. 26, 10702–10706 (2020)

    Google Scholar 

  • Damer, B., Deamer, D.: The hot spring hypothesis for an origin of life. Astrobiology. 20(4), 429–452 (2019)

    ADS  Google Scholar 

  • Ferris, J.P.: Catalysis and prebiotic RNA synthesis. Orig. Life Evol. Biosph. 23, 307–315 (1993)

    ADS  Google Scholar 

  • Fialho, D.M., Roche, T.P., Hud, N.V.: Prebiotic syntheses of noncanonical nucleosides and nucleotides. Chem. Rev. 120, 4806–4830 (2020)

    Google Scholar 

  • Fischer, E., Helferich, B.: Synthetische glucoside der purine. Ber. Dtsch. Chem. Ges. 47, 210–235 (1914)

    Google Scholar 

  • Fuks, E., Huber, L., Schinkel, T., Trapp, O.: Investigation of straightforward, photoinduced alkylations of electron-rich heterocompounds with electron-deficient alkyl bromides in the sole presence of 2,6-Lutidine. Eur. J. Org. Chem. (2020). https://doi.org/10.1002/ejoc.202001003

  • Fuller, W.D., Sanchez, R.A., Orgel, L.E.: Studies in prebiotic synthesis: vi. Synthesis of purine nucleosides. J. Mol. Biol. 67, 25–33 (1972)

    Google Scholar 

  • Gilbert, W.: Origin of life: the RNA world. Nature. 319, 618 (1986)

    ADS  Google Scholar 

  • Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N., Altman, S.: The rna moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 35, 849–857 (1983)

    Google Scholar 

  • Haas, M., Lamour, S., Christ, S.B., Trapp, O.: Mineral-mediated carbohydrate synthesis by mechanical forces in a primordial geochemical setting. Commun. Chem. (2020). https://doi.org/10.1038/s42004-020-00387-w

  • Hutchison, C.A., Chuang, R.-Y., Noskov, V.N., Assad-Garcia, N., Deerinck, T.J., Ellisman, M.H., Gill, J., Kannan, K., Karas, B.J., Ma, L., Pelletier, J.F., Qi, Z.-Q., Richter, R.A., et al.: Design and synthesis of a minimal bacterial genome. Science. 351, aad6253 (2016)

    Google Scholar 

  • Joyce, G.F.: RNA evolution and the origins of life. Nature. 338, 217 (1989)

    ADS  Google Scholar 

  • Joyce, G.F.: The antiquity of RNA-based evolution. Nature. 418, 214 (2002)

    ADS  Google Scholar 

  • Kim, H.-J., Benner, S.A.: Prebiotic stereoselective synthesis of purine and noncanonical pyrimidine nucleotide from nucleobases and phosphorylated carbohydrates. PNAS. 114, 11315 (2017)

    Google Scholar 

  • Knoevenagel, E.: Ueber den chemismus der condensierenden Wirkung des Ammoniaks und organischer Amine bei Reactionen zwischen Aldehyden und Acetessigester. Ber. Dtsch. Chem. Ges. 31, 738–748 (1898)

    Google Scholar 

  • Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E., Cech, T.R.: Self-splicing RNA: autoexcision and autocyclization of the ribosomal rna intervening sequence of tetrahymena. Cell. 31, 147–157 (1982)

    Google Scholar 

  • Kruse, F.M., Teichert, J.S., Trapp, O.: Prebiotic nucleoside synthesis - the selectivity of simplicity. Chem. Eur. J. 26 (2020). https://doi.org/10.1002/chem.202001513

  • Larralde, R., Robertson, M.P., Miller, S.L.: Rates of decomposition of ribose and other sugars: implications for chemical evolution. PNAS. 92, 8158–8160 (1995)

    ADS  Google Scholar 

  • Lazcano, A., Guerrero, R., Margulis, L., Oró, J.: The evolutionary transition from RNA to DNA in early cells. J. Mol. Evol. 27, 283–290 (1988)

    ADS  Google Scholar 

  • Lincoln, T.A., Joyce, G.F.: Self-sustained replication of an RNA enzyme. Science. 323, 1229 (2009)

    ADS  Google Scholar 

  • List, B.: Proline-catalyzed asymmetric reactions. Tetrahedron. 58, 5573–5590 (2002)

    Google Scholar 

  • List, B.: Emil Kknoevenagel and the roots of aminocatalysis. Angew. Chem. Int. Ed. 49, 1730–1734 (2010)

    Google Scholar 

  • Meinert, C., Myrgorodska, I., Marcellus, P.D., Buhse, T., Nahon, L., Hoffmann, S.V., D’Hendecourt, L.L.S., Meierhenrich, U.J.: Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science. 352, 208–212 (2016)

    ADS  Google Scholar 

  • Miller, S.L., Urey, H.C.: Organic compound synthes on the primitive earth. Science. 117, 245–251 (1953)

    Google Scholar 

  • Muchowska, K.B., Varma, S.J., Moran, J.: Nonenzymatic metabolic reactions and life’s origins. Chem. Rev. 120, 7708–7744 (2020)

    Google Scholar 

  • Mukherjee, S., Yang, J.W., Hoffmann, S., List, B.: Asymmetric enamine catalysis. Chem. Rev. 107, 5471–5569 (2007)

    Google Scholar 

  • Mulkidjanian, A.Y., Bychkov, A.Y., Dibrova, D.V., Galperin, M.Y., Koonin, E.V.: Origin of first cells at terrestrial, anoxic geothermal fields. PNAS. 109, E821–E830 (2012)

    ADS  Google Scholar 

  • Nuevo, M., Cooper, G., Sandford, S.A.: Deoxyribose and deoxysugar derivatives from photoprocessed astrophysical ice analogues and comparison to meteorites. Nat. Commun. 9, 5276 (2018)

    ADS  Google Scholar 

  • Oparin, A.I.: The Origin of Life, VIII. The Macmillan Company, New York (1953)

    Google Scholar 

  • Oró, J., Kimball, A.P.: Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Arch. Biochem. Biophys. 94, 217–227 (1961)

    Google Scholar 

  • Patora-Komisarska, K., Benohoud, M., Ishikawa, H., Seebach, D., Hayashi, Y.: Organocatalyzed michael addition of aldehydes to nitro alkenes – generally accepted mechanism revisited and revised. Helv. Chim. Acta. 94, 719–745 (2011)

    Google Scholar 

  • Paventi, M., Edward, J.T.: Preparation of α-aminothioamides from aldehydes. Can. J. Chem. 65, 282–289 (1987)

    Google Scholar 

  • Pičmanová, M., Møller, B.L.: Apiose: one of nature’s witty games. Glycobiology. 26, 430–442 (2016)

    Google Scholar 

  • Pizzarello, S., Weber, A.L.: Stereoselective syntheses of pentose sugars under realistic prebiotic conditions. Orig. Life Evol. Biosph. 40, 3–10 (2010)

    ADS  Google Scholar 

  • Plows, F.L., Elsila, J.E., Zare, R.N., Buseck, P.R.: Evidence that polycyclic aromatic hydrocarbons in two carbonaceous chondrites predate parent-body formation. Geosci. Front. 67, 1429–1436 (2003)

    Google Scholar 

  • Poole, A.M., Logan, D.T., Sjöberg, B.-M.: The evolution of the ribonucleotide reductases: much ado about oxygen. J. Mol. Evol. 55, 180–196 (2002)

    ADS  Google Scholar 

  • Powner, M.W., Gerland, B., Sutherland, J.D.: Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature. 459, 239–242 (2009)

    ADS  Google Scholar 

  • Powner, M.W., Sutherland, J.D., Szostak, J.W.: Chemoselective multicomponent one-pot assembly of purine precursors in water. J. Am. Chem. Soc. 132, 16677–16688 (2010)

    Google Scholar 

  • Preiner, M., Igarashi, K., Muchowska, K.B., Yu, M., Varma, S.J., Kleinermanns, K., Nobu, M.K., Kamagata, Y., Tüysüz, H., Moran, J., Martin, W.F.: A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat. Ecol. Evol. 4, 534–542 (2020)

    Google Scholar 

  • Roy, B., Depaix, A., Périgaud, C., Peyrottes, S.: Recent trends in nucleotide synthesis. Chem. Rev. 116, 7854–7897 (2016)

    Google Scholar 

  • Ruiz-Mirazo, K., Briones, C., Escosura, A.D.L.: Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014)

    Google Scholar 

  • Sanchez, R.A., Orgel, L.E.: Studies in prebiotic synthesis. J. Mol. Biol. 47, 531–543 (1970)

    Google Scholar 

  • Schöning, K.-U., Scholz, P., Guntha, S., Wu, X., Krishnamurthy, R., Eschenmoser, A.: Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3′ →2′) oligonucleotide system. Science. 290, 1347 (2000)

    ADS  Google Scholar 

  • Teichert, J.S., Kruse, F.M., Trapp, O.: Direct prebiotic pathway to DNA nucleosides. Angew. Chem. Int. Ed. 58, 9944–9947 (2019)

    Google Scholar 

  • Vongerichten, E.: Ueber Apiose, eine β-Oxymethylerythrose. Justus Liebigs Ann. Chem. 321, 71–83 (1902)

    Google Scholar 

  • Wennemers, H.: Asymmetric catalysis with peptides. Chem. Commun. 47, 12036–12041 (2011)

    Google Scholar 

  • Wiesner, M., Revell, J.D., Tonazzi, S., Wennemers, H.: Peptide catalyzed asymmetric conjugate addition reactions of aldehydes to nitroethylene—a convenient entry into γ2-amino acids. J. Am. Chem. Soc. 130, 5610–5611 (2008)

    Google Scholar 

  • Woese, C.R.: The fundamental nature of the genetic code: prebiotic interactions between polynucleotides and polyamino acids or their derivatives. Proc. Natl. Acad. Sci. USA. 59, 110 (1968)

    ADS  Google Scholar 

  • Xu, J., Green, N.J., Gibard, C., Krishnamurthy, R., Sutherland, J.D.: Prebiotic phosphorylation of 2-thiouridine provides either nucleotides or dna building blocks via photoreduction. Nat. Chem. 11, 457–462 (2019)

    Google Scholar 

  • Xu, J., Chmela, V., Green, N., Russell, D., Janicki, M., Góra, R., Szabla, R., Bond, A., Sutherland, J.: Selective prebiotic formation of rna pyrimidine and dna purine nucleosides. Nature. 582, 60–66 (2020)

    ADS  Google Scholar 

  • Yadav, M., Kumar, R., Krishnamurthy, R.: Chemistry of abiotic nucleotide synthesis. Chem. Rev. 120, 4766–4805 (2020)

    Google Scholar 

  • Yang, J.W., Chandler, C., Stadler, M., Kampen, D., List, B.: Proline-catalysed mannich reactions of acetaldehyde. Nature. 452, 453–455 (2008)

    ADS  Google Scholar 

  • Yu, H., Zhang, S., Chaput, J.C.: Darwinian evolution of an alternative genetic system provides support for tna as an rna progenitor. Nat. Chem. 4, 183 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Trapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Trapp, O. (2021). First Steps Towards Molecular Evolution. In: Neubeck, A., McMahon, S. (eds) Prebiotic Chemistry and the Origin of Life. Advances in Astrobiology and Biogeophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-81039-9_7

Download citation