Skip to main content

Mineralogical Environments of the Hadean Eon: Rare Elements Were Ubiquitous in Surface Sites of Rock-Forming Minerals

Rare Elements Ubiquitous on Rock-Forming Mineral Surfaces in the Hadean

  • 475 Accesses

Part of the Advances in Astrobiology and Biogeophysics book series (ASTROBIO)

Abstract

Surfaces of condensed inorganic phases, including minerals and volcanic glass, are often invoked in origins-of-life models as potential catalysts, templates, reactants, or protective environments for critical prebiotic reactions. Consequently, mineralogists have compiled inventories of early Earth minerals and their reactive surface sites. These lists of probable near-surface minerals present during Earth’s Hadean Eon (>4.0 Ga) collate more than 400 species, including phases in meteorites, the igneous minerals of Earth’s earliest differentiated crust, magma and fumarole (hot vapor deposited) minerals of volcanic deposits, and a host of minerals that formed through interactions with Earth’s emerging hydrosphere. These varied minerals incorporate more than two dozen chemical elements that are critical to biochemistry. However, minerals with high concentrations of several elements thought to be essential for the chemistry of life’s origins and/or subsequent metabolism, including B, P, V, Co, Ni, Cu, Zn, and Mo, were volumetrically trivial, if not completely absent, from that Hadean mineral inventory. Consequently, it may not be reasonable to invoke minerals such as borates or molybdates in origins-of-life scenarios. We propose an alternative possibility: common rock-forming minerals with modest concentrations (typically 10s to 1000s of parts-per-million levels) of trace elements may have been critical to origins-of-life chemistry. Accordingly, to complement lists of Hadean mineral species we catalog trace and minor elements in such ubiquitous minerals as olivine, high-Ca pyroxene, plagioclase feldspars, and magnetite, as well as volcanic glass. We conclude that varied reactive surface sites with all elements essential to life’s origins were abundant in Hadean geochemical environments.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-81039-9_2
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-81039-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)

References

  • Acevedo, O.L., Orgel, L.E.: Template-directed oligonucleotide ligation on hydroxylapatite. Nature. 321, 790–792 (1986)

    ADS  Google Scholar 

  • Arndt, N.T., Nisbet, E.G. (eds.): Komatiites. George Allen & Unwin, London (1982)

    Google Scholar 

  • Bebié, J., Schoonen, M.A.A.: Pyrite surface interaction with selected organic aqueous species under anoxic conditions. Geochem. Trans. 1, 47 (2000)

    Google Scholar 

  • Benner, S.A., Hutter, D.: Phosphates, DNA, and the search for nonterrean life: a second generation model for genetic molecules. Bioorg. Chem. 30, 62–80 (2002)

    Google Scholar 

  • Bernal, J.D.: The Physical Basis of Life. Routledge and Kegan Paul, London (1951)

    Google Scholar 

  • Berndt, M.E., Allen, D.E., Seyfried Jr., W.E.: Reduction of CO2 during serpentization of olivine at 300°C and 500 bar. Geology. 24, 351–354 (1996)

    ADS  Google Scholar 

  • Blöchl, E., Keller, M., Wächtershäuser, G., Stetter, K.O.: Reactions depending on iron sulfide and linking geochemistry with biochemistry. Proc. Natl. Acad. Sci. USA. 89, 8117–8120 (1992)

    ADS  Google Scholar 

  • Bonner, W.A., Kavasmaneck, P.R., Martin, F.S., Flores, J.J.: Asymmetric adsorption of alanine by quartz. Science. 186, 143–144 (1974)

    ADS  Google Scholar 

  • Bonner, W.A., Kavasmaneck, P.R., Martin, F.S., Flores, J.J.: Asymmetric adsorption by quartz: a model for the prebiotic origin of optical activity. Orig. Life. 6, 367–376 (1975)

    ADS  Google Scholar 

  • Borowska, Z.K., Mauzerall, D.C.: Efficient near ultraviolet light induced formation of hydrogen by ferrous hydroxide. Orig. Life Evol. Biosph. 17, 251–259 (1987)

    Google Scholar 

  • Bowen, N.L.: The Evolution of the Igneous Rocks. Princeton University Press, Princeton, NJ (1928)

    Google Scholar 

  • Brandes, J.A., Boctor, N.Z., Cody, G.D., Cooper, B.A., Hazen, R.M., Yoder Jr., H.S.: Abiotic nitrogen reduction on the early earth. Nature. 395, 365–367 (1998)

    ADS  Google Scholar 

  • Braterman, P.S., Cairns-Smith, A.G., Sloper, R.W.: Photo-oxidation of hydrated Fe2+—significance for banded iron formations. Nature. 303, 163–164 (1983)

    ADS  Google Scholar 

  • Brearley, A.J., Jones, R.H.: Chondritic meteorites. Rev. Mineral. 36, 3.01–3.398 (1998)

    Google Scholar 

  • Burke, E.A.J.: The end of CNMMN and CCM—long live the CNMNC! Elements. 2, 388 (2006)

    Google Scholar 

  • Cairns-Smith, A.G.: Takeover mechanisms and early biochemical evolution. Biosystems. 9, 105–109 (1977)

    Google Scholar 

  • Cairns-Smith, A.G.: Genetic Takeover and the Mineral Origins of Life. Cambridge University Press, U.K. (1982)

    Google Scholar 

  • Cairns-Smith, A.G.: Sketches for a mineral genetic system. Elements. 1, 157–161 (2005)

    Google Scholar 

  • Cairns-Smith, A.G., Hartman, H.: Clay Minerals and the Origin of Life. Cambridge University Press, U.K. (1986)

    Google Scholar 

  • Canil, D., Fedortchouk, Y.: Olivine-liquid partitioning of vanadium and other trace elements, with applications to modern and ancient picrites. Can. Mineral. 39, 319–330 (2001)

    Google Scholar 

  • Cleaves II, H.J., Scott, A.M., Hill, F.C., Leszczynski, J., Sahai, N., Hazen, R.M.: Mineral-organic interfacial processes: potential roles in the origins of life. Chem. Soc. Rev. 41, 5502–5525 (2012)

    Google Scholar 

  • Cleland, C.E.: Prediction and explanation in historical natural science. Br. J. Philos. Sci. 62, 551–582 (2011)

    Google Scholar 

  • Cleland, C.E., Hazen, R.M., Morrison, S.M.: Historical natural kinds and mineralogy: systematizing contingency in the context of necessity. Proc. Natl. Acad. Sci. 118(1), e2015370118 (2020)

    Google Scholar 

  • Cody, G.D.: Transition metal sulfides and the origins of metabolism. Annu. Rev. Earth Planet. Sci. 32, 569–599 (2004)

    ADS  Google Scholar 

  • Cody, G.D.: Geochemical connections to primitive metabolism. Elements. 1, 139–143 (2005)

    Google Scholar 

  • Cody, G.D., Boctor, N.Z., Filley, T.R., Hazen, R.M., Scott, J.H., Yoder Jr., H.S.: The primordial synthesis of carbonylated iron-sulfur clusters and the synthesis of pyruvate. Science. 289, 1339–1342 (2000)

    ADS  Google Scholar 

  • Cody, G.D., Boctor, N.Z., Hazen, R.M., Brandes, J.A., Morowitz, H.J., Yoder Jr., H.S.: Geochemical roots of autotrophic carbon fixation: hydrothermal experiments in the system citric acid, H2O-(±FeS)-(±NiS). Geochim. Cosmochim. Acta. 65, 3557–3576 (2001)

    ADS  Google Scholar 

  • Cody, G.D., Boctor, N.Z., Brandes, J.A., Filley, T.L., Hazen, R.M., Yoder Jr., H.S.: Assaying the catalytic potential of transition metal sulfides for abiotic carbon fixation. Geochim. Cosmochim. Acta. 68, 2185–2196 (2004)

    ADS  Google Scholar 

  • Davies, P.: Many planets, not much life. Sci. Am. (2016). https://doi.org/10.1038/scientificamerican0916-8

  • De Duve, C.: Vital Dust: Life as a Cosmic Imperative. Basic Books, New York (1995)

    Google Scholar 

  • Deamer, D.: First Life: Discovering the Connections Between Stars, Cells, and How Life Began. University of California Press, Berkeley, CA (2011)

    Google Scholar 

  • Deer, W.A., Howie, R.A., Zussman, J. (eds.): Rock-Forming Minerals: Sheet Silicates, vol. 3. Longmans, Green & Co, London (1962)

    Google Scholar 

  • Deer, W.A., Howie, R.A., Zussman, J.: Rock-Forming Minerals: Orthosilicates, vol. 1A. London, Geological Society of London (1982)

    Google Scholar 

  • Deer, W.A., Howie, R.A., Zussman, J.: Rock-Forming Minerals: Single-Chain Silicates, vol. 2A. London, Geological Society of London (1997)

    Google Scholar 

  • Deer, W.A., Howie, R.A., Zussman, J.: Rock-Forming Minerals: Feldspars, vol. 4A. London, Geological Society of London (2001)

    Google Scholar 

  • Deer, W.A., Howie, R.A., Zussman, J.: Rock-Forming Minerals: Non-Silicates Oxides, Hydroxides and Sulfides, vol. 5A. London, Geological Society of London (2011)

    Google Scholar 

  • Ereshefsky, M.: Species, historicity, and path dependency. Philos. Sci. 81, 714–726 (2014)

    Google Scholar 

  • Ertem, G., Ferris, J.P.: Synthesis of RNA oligomers on heterogeneous templates. Nature. 379, 238–240 (1996)

    ADS  Google Scholar 

  • Ertem, G., Ferris, J.P.: Template-directed synthesis using the heterogeneous templates produced by montmorillonite catalysis. A possible bridge between the prebiotic and RNA worlds. J. Am. Chem. Soc. 119, 7197–7201 (1997)

    Google Scholar 

  • Essene, E.J., Fisher, D.C.: Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science. 234, 189–193 (1986)

    ADS  Google Scholar 

  • Everitt, B.: Cluster Analysis. Wiley, Chichester (2011)

    MATH  Google Scholar 

  • Evgenii, K., Wolfram, T.: The role of quartz in the origin of optical activity on earth. Orig. Life Evol. Biosph. 30, 431–434 (2000)

    ADS  Google Scholar 

  • Ferris, J.P.: Catalysis and prebiotic synthesis. Orig. Life Evol. Biosph. 23, 307–315 (1993)

    ADS  Google Scholar 

  • Ferris, J.P.: Mineral catalysis and prebiotic synthesis: montmorillonite-catalyzed formation of RNA. Elements. 1, 145–149 (2005)

    Google Scholar 

  • Ferris, J.P., Ertem, G.: Oligomerization of ribonucleotides on montmorillonite—reaction of the 5′-phosphorimidazolide of adenosine. Science. 257, 1387–1389 (1992)

    ADS  Google Scholar 

  • Ferris, J.P., Ertem, G.: Montmorillonite catalysis of RNA oligomer formation in aqueous solution—a model for the prebiotic formation of RNA. J. Am. Chem. Soc. 115, 12270–12275 (1993)

    Google Scholar 

  • Ferris, J.P., Hill, A.R., Liu, R., Orgel, L.E.: Synthesis of long prebiotic oligomers on mineral surfaces. Nature. 381, 59–61 (1996)

    ADS  Google Scholar 

  • Fraústo da Silva, J.J.R., Williams, R.J.P.: The Biological Chemistry of the Elements. The Inorganic Chemistry of Life, 2nd edn. Oxford University Press, Oxford (2001)

    Google Scholar 

  • Godman, M.: Scientific realism with historical essences: the case of species. Synthese. (2019). https://doi.org/10.1007/s11229-018-02034-3

  • Golden, J., McMillan, M., Downs, R.T., Hystad, G., Stein, H.J., Zimmerman, A., Sverjensky, D.A., Armstrong, J., Hazen, R.M.: Rhenium variations in molybdenite (MoS2): evidence for progressive subsurface oxidation. Earth Planet. Sci. Lett. 366, 1–5 (2013)

    ADS  Google Scholar 

  • Goldschmidt, V.M.: Geochemical aspects of the origin of complex organic molecules on the earth, as precursors to organic life. New Biol. 12, 97–105 (1952)

    Google Scholar 

  • Grew, E.S., Hazen, R.M.: Beryllium mineral evolution. Am. Mineral. 99, 999–1021 (2014)

    ADS  Google Scholar 

  • Grew, E.S., Bada, J.L., Hazen, R.M.: Borate minerals and origin of the RNA world. Orig. Life Evol. Biosph. 41, 307–316 (2011)

    ADS  Google Scholar 

  • Grew, E.S., Hystad, G., Toapanta, M., Eleish, A., Ostroverkhova, A., Golden, J., Hazen, R.M.: Lithium mineral evolution and ecology: comparison with boron and beryllium. Eur. J. Mineral. 31, 755–774 (2019). https://doi.org/10.1127/ejm/2019/0031-2862

    CrossRef  ADS  Google Scholar 

  • Hanczyc, M.M., Fujikawa, S.M., Szostak, J.W.: Experimental models of primitive cellular compartments: encapsulation, growth and division. Science. 302, 618–622 (2003)

    ADS  Google Scholar 

  • Hansma, H.A.: Possible origin of life between mica sheets: does life imitate mica? J. Biomol. Struct. Dyn. 31, 888–895 (2010)

    MATH  Google Scholar 

  • Haynes, W.M.: CRC Handbook of Chemistry and Physics, 97th edn, pp. 14–17. CRC Press, Boca Raton, FL (2016)

    Google Scholar 

  • Hazen, R.M.: Genesis: The Scientific Quest for Life’s Origin. Joseph Henry Press, Washington, DC (2005)

    Google Scholar 

  • Hazen, R.M.: Mineral surfaces and the prebiotic selection and organization of biomolecules. Am. Mineral. 91, 1715–1729 (2006)

    ADS  Google Scholar 

  • Hazen, R.M.: The evolution of minerals. Sci. Am. 303, 58–65 (2010)

    Google Scholar 

  • Hazen, R.M.: The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet. Viking, New York (2012)

    Google Scholar 

  • Hazen, R.M.: Paleomineralogy of the hadean eon: a preliminary list. Am. J. Sci. 313, 807–843 (2013)

    ADS  Google Scholar 

  • Hazen, R.M.: Data-driven abductive discovery in mineralogy. Am. Mineral. 99, 2165–2170 (2014)

    ADS  Google Scholar 

  • Hazen, R.M.: Chance, necessity, and the origins of life: a physical sciences perspective. Philos. Trans. R. Soc. A375, 20160353 (2017). https://doi.org/10.1098/rsta.2016.0353

    CrossRef  ADS  Google Scholar 

  • Hazen, R.M.: An evolutionary system of mineralogy: proposal for a classification based on natural kind clustering. Am. Mineral. 104, 810–816 (2019). https://doi.org/10.2138/am-2019-6709

    CrossRef  ADS  Google Scholar 

  • Hazen, R.M., Ferry, J.M.: Mineral evolution: mineralogy in the fourth dimension. Elements. 6, 9–12 (2010)

    Google Scholar 

  • Hazen, R.M., Morrison, S.M.: An evolutionary system of mineralogy, part I: stellar mineralogy (>13 to 4.6 Ga). Am. Mineral. 105, 627–651 (2020)

    ADS  Google Scholar 

  • Hazen, R.M., Morrison, S.M.: An evolutionary system of mineralogy, Part V: planetesimal aqueous and thermal alteration of planetesimals (4.565 to 4.550 Ga). Am Mineral. (2021). https://doi.org/10.2138/am-2021-7760

  • Hazen, R.M., Morrison, S.M.: On the paragenetic modes of minerals: A mineral evolution perspective. American Mineralogist, in press (2022). https://doi.org/10.2138/am-2021-8099

  • Hazen, R.M., Papineau, D.: Mineralogical co-evolution of the geosphere and biosphere. In: Knoll, A.H., Canfield, D.E., Konhauser, K.O. (eds.) Fundamentals of Geobiology, pp. 333–350. Oxford, UK, Wiley-Blackwell (2012)

    Google Scholar 

  • Hazen, R.M., Sholl, D.S.: Chiral selection on inorganic crystalline surfaces. Nat. Mater. 2, 367–374 (2003)

    ADS  Google Scholar 

  • Hazen, R.M., Filley, T.R., Goodfriend, G.A.: Selective adsorption of L- and D-amino acids on calcite: implications for biochemical homochirality. Proc. Natl. Acad. Sci. USA. 98, 5487–5490 (2001)

    ADS  Google Scholar 

  • Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.J., Sverjensky, D.A., Yang, H.: Mineral evolution. Am. Mineral. 93, 1693–1720 (2008)

    ADS  Google Scholar 

  • Hazen, R.M., Ewing, R.C., Sverjensky, D.A.: Evolution of uranium and thorium minerals. Am. Mineral. 94, 1293–1311 (2009)

    ADS  Google Scholar 

  • Hazen, R.M., Bekker, A., Bish, D.L., Bleeker, W., Downs, R.T., Farquhar, J., Ferry, J.M., Grew, E.S., Knoll, A.H., Papineau, D.F., Ralph, J.P., Sverjensky, D.A., Valley, J.W.: Needs and opportunities in mineral evolution research. Am. Mineral. 96, 953–963 (2011)

    ADS  Google Scholar 

  • Hazen, R.M., Downs, R.T., Golden, J., Hystad, G., Grew, E.S., Azzolini, D., Sverjensky, D.A.: Mercury (Hg) mineral evolution: a mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. Am. Mineral. 97, 1013–1042 (2012)

    ADS  Google Scholar 

  • Hazen, R.M., Sverjensky, D.A., Azzolini, D., Bish, D.L., Elmore, S., Hinnov, L., Milliken, R.E.: Clay mineral evolution. Am. Mineral. 98, 2007–2029 (2013a)

    ADS  Google Scholar 

  • Hazen, R.M., Jones, A.P., Kah, L., Sverjensky, D.A.: Carbon mineral evolution. In: Hazen, R.M., Jones, A.P., Baross, J. (eds.) Carbon in Earth, pp. 79–107. Mineralogical Society of America, Washington, DC (2013b)

    Google Scholar 

  • Hazen, R.M., Grew, E.S., Downs, R.T., Golden, J., Hystad, G.: Mineral ecology: chance and necessity in the mineral diversity of terrestrial planets. Can. Mineral. 53, 295–323 (2015). https://doi.org/10.3749/canmin.1400086

    CrossRef  Google Scholar 

  • Hazen, R.M., Hystad, G., Golden, J.J., Hummer, D.R., Liu, C., Downs, R.T., Morrison, S.M., Ralph, J., Grew, E.S.: Cobalt mineral ecology. Am. Mineral. 102, 108–116 (2017a)

    ADS  Google Scholar 

  • Hazen, R.M., Grew, E.S., Origlieri, M., Downs, R.T.: On the mineralogy of the “Anthropocene Epoch.”. Am. Mineral. 102, 595–611 (2017b)

    ADS  Google Scholar 

  • Hazen, R.M., Downs, R.T., Elesish, A., Fox, P., Gagné, O., Golden, J.J., Grew, E.S., Hummer, D.R., Hystad, G., Krivovichev, S.V., Li, C., Liu, C., Ma, X., Morrison, S.M., Pan, F., Pires, A.J., Prabhu, A., Ralph, J., Runyon, S.E., Zhong, H.: Data-driven discovery in mineralogy: recent advances in data resources, analysis, and visualization. China Eng. 5, 397–405 (2019). https://doi.org/10.1016/j.eng.2019.03.006

    CrossRef  Google Scholar 

  • Hazen, R.M., Morrison, S.M., Prabhu, A.: An evolutionary system of mineralogy, part III: primary chondrule mineralogy (4.566 to 4.561 Ga). Am. Mineral. (2021). https://doi.org/10.2138/am-2020-7564

  • Heinen, W., Lauwers, A.M.: Organic sulfur compounds resulting from interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an aerobic aqueous environment. Orig. Life Evol. Biosph. 26, 131–150 (1996)

    ADS  Google Scholar 

  • Herzberg, C., Vidito, C., Starkey, N.A.: Nickel–cobalt contents of olivine record origins of mantle peridotite and related rocks. Am. Mineral. 101, 1952–1966 (2016)

    ADS  Google Scholar 

  • Hill, A.R., Böhler, C., Orgel, L.E.: Polymerization on the rocks: negatively-charged α-amino acids. Orig. Life Evol. Biosph. 28, 235–243 (1998)

    ADS  Google Scholar 

  • Holm, N.G., Ertem, G., Ferris, J.P.: The binding and reactions of nucleotides and polynucleotides on iron oxide hydroxide polymorphs. Orig. Life Evol. Biosph. 23, 195–215 (1993)

    ADS  Google Scholar 

  • Hua, X., Eisenhour, D.D., Buseck, P.R.: Cobalt-rich, nickel-poor metal (wairauite) in the Ningqiang carbonaceous chondrite. Meteoritics. 30, 106–109 (1995)

    ADS  Google Scholar 

  • Huber, C., Wächtershäuser, G.: Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science. 276, 245–247 (1997)

    Google Scholar 

  • Huber, C., Wächtershäuser, G.: Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: Implications for the origin of life. Science. 281, 670–672 (1998)

    ADS  Google Scholar 

  • Huber, C., Eisenreich, W., Hecht, S., Wächtershäuser: A possible primordial peptide cycle. Science. 301, 938–940 (2003)

    ADS  Google Scholar 

  • Huber, C., Kraus, F., Hanzlik, M., Eisenreich, W., Wächtershäuser, G.: Elements of metabolic evolution. Chem. Eur. J. (2012). https://doi.org/10.1002/chem.201102914

  • Hystad, G., Downs, R.T., Hazen, R.M.: Mineral frequency distribution data conform to a LNRE model: prediction of Earth’s “missing” minerals. Math. Geosci. 47, 647–661 (2015)

    MathSciNet  MATH  Google Scholar 

  • Hystad, G., Eleish, A., Downs, R.T., Morrison, S.M., Hazen, R.M.: Bayesian estimation of Earth’s undiscovered mineralogical diversity using noninformative priors. Math. Geosci. 51, 401–417 (2019). https://doi.org/10.1007/s11004-019-09795-8

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Jelen, B.I., Giovannelli, D., Falkowski, P.G.: The role of microbial electron transfer in the coevolution of the biosphere and geosphere. Annu. Rev. Microbiol. 70, 45–62 (2016)

    Google Scholar 

  • Jenner, F.E., O’Neill, H.S.C.: Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem. Geophys. Geosyst. 13 (2012). https://doi.org/10.1029/2011GC004009

  • Jonsson, C.M., Jonsson, C.L., Sverjensky, D.A., Cleaves, H.J., Hazen, R.M.: Attachment of L-glutamate to rutile (TiO2): a potentiometric, adsorption, and surface complexation study. Langmuir. 25, 12127–12135 (2009)

    Google Scholar 

  • Kent, A.J.R., Rossman, G.R.: Hydrogen, lithium and boron in mantle-derived olivine: the role of coupled substitutions. Am. Mineral. 87, 1432–1436 (2002)

    ADS  Google Scholar 

  • Kim, J.D., Yee, N., Nanda, V., Falkowski, P.G.: Anoxic photochemical oxidation of siderite generates molecular hydrogen and iron oxides. Proc. Natl. Acad. Sci. USA. 110, 10073–10077 (2013)

    ADS  Google Scholar 

  • Kim, H., Furukawa, Y., Kakegawa, T., Bita, A., Scorei, R., Benner, S.A.: Evaporite borate-containing mineral ensembles make phosphate available and regiospecifically phosphorylate ribonucleosides: borate as a multifaceted problem solver in prebiotic chemistry. Angew. Chem. Int. Ed. 55, 15816–15820 (2016)

    Google Scholar 

  • Koritnig, S.: Geochemistry of phosphorus. I. The replacement of Si4+ by P5+ in rock-forming silicate minerals. Geochimica et Cosmochimica Acta, 29, 361–371. (1965)

    ADS  Google Scholar 

  • Krivovichev, S.V., Krivovichev, V.G., Hazen, R.M.: Structural and chemical complexity of minerals: correlations and time evolution. Eur. J. Mineral. 18, 231–236 (2017). https://doi.org/10.1127/ejm/2018/0030-2694

    CrossRef  Google Scholar 

  • Lahav, N.: Biogenesis: Theories of Life’s Origin. Oxford University Press, New York (1999)

    Google Scholar 

  • Lahav, N., White, D., Chang, S.: Peptide formation in the prebiotic era: thermal condensation of glycine in fluctuating clay environments. Science. 201, 67–69 (1978)

    ADS  Google Scholar 

  • Lester, G.W., Clark, A.H., Kyser, T.K., Naslund, H.R.: Experiments on liquid immiscibility in silicate melts with H2O, P, S, F and Cl: implications for natural magmas. Contrib. Mineral. Petrol. 166, 329–349 (2013)

    ADS  Google Scholar 

  • Liu, X., Xiong, X., Audetat, A., Li, Y., Song, M., Li, L., Sun, W., Ding, X.: Partitioning of copper between olivine, orthopyroxene, clinopyroxene, spinel, garnet and silicate melts at upper mantle conditions. Geochim. Cosmochim. Acta. 125, 1–22 (2014)

    ADS  Google Scholar 

  • Liu, C., Hystad, G., Golden, J.J., Hummer, D.R., Downs, R.T., Morrison, S.M., Grew, E.S., Hazen, R.M.: Chromium mineral ecology. Am. Mineral. 102, 612–619 (2017a)

    ADS  Google Scholar 

  • Liu, C., Knoll, A.H., Hazen, R.M.: Geochemical and mineralogical evidence that Rodinian assembly was unique. Nat. Commun. 8, 1950 (2017b)

    ADS  Google Scholar 

  • Liu, C., Eliesh, A., Hystad, G., Golden, J.J., Downs, R.T., Morrison, S.M., Hummer, D.R., Ralph, J.P., Fox, P., Hazen, R.M.: Analysis and visualization of vanadium mineral diversity and distribution. Am. Mineral. 103, 1080–1086 (2018). https://doi.org/10.2138/am-2018-6274

    CrossRef  ADS  Google Scholar 

  • London, D.: Pegmatites, vol. 10. Mineralogical Association of Canada, Quebec City (2008)

    Google Scholar 

  • Lyons, T.W., Fike, D.A., Zerkle, A.: Emerging biogeochemical views of Earth’s ancient microbial worlds. Elements. 11, 415–421 (2015)

    Google Scholar 

  • McCollom, T.M., Seewald, J.S.: A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta. 65, 3769–3778 (2001)

    ADS  Google Scholar 

  • Mills, S.J., Hatert, F., Nickel, E.H., Ferrais, G.: The standardization of mineral group hierarchies: application to recent nomenclature proposals. Eur. J. Mineral. 21, 1073–1080 (2009)

    ADS  Google Scholar 

  • Monod, J.: Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology. Knopf, New York (1970)

    Google Scholar 

  • Moore, E.K., Jelen, B.I., Giovannelli, D., Raanan, H., Falkowski, P.G.: Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nat. Geosci. 10, 629–636 (2017)

    ADS  Google Scholar 

  • Moore, E.K., Hao, J., Sverjensky, D.A., Jelen, B.I., Meyer, M., Hazen, R.M., Falkowski, P.G.: Geological and chemical factors that impacted the biological utilization of cobalt in the Archean eon. J. Geophys. Res. Biogeosci. 123, 743–759 (2018). https://doi.org/10.1002/2017G004067

    CrossRef  Google Scholar 

  • Morrison, S.M., Hazen, R.M.: An evolutionary system of mineralogy, part II: interstellar and solar nebula primary condensation mineralogy (> 4.565 Ga). Am. Mineral. (2020). https://doi.org/10.2138/am-2020-7447

  • Morrison, S.M., Hazen, R.M.: An evolutionary system of mineralogy, part IV: planetesimal differentiation and impact mineralization (4.566 to 4.560 Ga). Am. Mineral. (2021). https://doi.org/10.2138/am-2021-7632

  • Morrison, S.M., Liu, C., Eleish, A., Prabhu, A., Li, C., Ralph, J., Downs, R.T., Golden, J.J., Fox, P., Hummer, D.R., Meyer, M.B., Hazen, R.M.: Network analysis of mineralogical systems. Am. Mineral. 102, 1588–1596 (2017). https://doi.org/10.2138/am-2017-6104

    CrossRef  ADS  Google Scholar 

  • Morrison, S.M., Runyon, S.E., Hazen, R.M.: The paleomineralogy of the Hadean Eon revisited. Life. 8, 64 (2018). https://doi.org/10.3390/life8040064

    CrossRef  Google Scholar 

  • Morrison, S.M., Buongiorno, J., Downs, R.T., Eleish, A., Fox, P., Giovannelli, D., Golden, J.J., Hummer, D.R., Hystad, G., Kellogg, L.H., Kreylos, O., Krivovichev, S.V., Liu, C., Prabhu, A., Ralph, J., Runyon, S.E., Zahirovic, S., Hazen, R.M.: Visualizing carbon mineral systems: recent advances in C mineral evolution, mineral ecology, and network analysis. Front. Earth Sci. (2020). https://doi.org/10.3389/feart.2020.00208

  • Mulkidjanian, A.Y.: On the origin of life in the zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth. Biol. Direct. 4, 26 (2009)

    Google Scholar 

  • Mulkidjanian, A.Y., Galperin, M.Y.: On the origin of life in the zinc world: 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol. Direct. 4, 27 (2009)

    Google Scholar 

  • Nitschke, W., McGlynn, S.E., Milner-White, E.J., Russell, M.J.: On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim. Biophys. Acta. 1827, 871–881 (2013)

    Google Scholar 

  • O’Reilly, S.Y., Chen, D., Griffin, W.L., Ryan, C.G.: Minor elements in olivine from spinel lherzolite xenoliths: implications for thermobarometry. Mineral. Mag. 61, 257–269 (1997)

    Google Scholar 

  • Orgel, L.E.: Polymerization on the rocks: theoretical introduction. Orig. Life Evol. Biosph. 28, 227–234 (1998)

    ADS  Google Scholar 

  • Papineau, D.: Mineral environments of the earliest Earth. Elements. 6, 25–30 (2010)

    Google Scholar 

  • Parsons, I., Lee, M.R., Smith, J.V.: Biochemical evolution II: origin of life in tubular microstructures in weathered feldspar surfaces. Proc. Natl. Acad. Sci. USA. 95, 15173–15176 (1998)

    ADS  Google Scholar 

  • Pasek, M.A.: Rethinking early Earth phosphorus geochemistry. Proc. Natl. Acad. Sci. USA. 105, 853–858 (2008)

    ADS  Google Scholar 

  • Pasek, M., Block, K.: Lightning-induced reduction of phosphorus oxidation state. Nat. Geosci. 2, 553–556 (2009)

    ADS  Google Scholar 

  • Pasek, M.A., Lauretta, D.S.: Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early earth. Astrobiology. 5, 515–535 (2005)

    ADS  Google Scholar 

  • Pasek, M.A., Dworkin, J.P., Lauretta, D.S.: A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim. Comsochim. Acta. 71, 1721–1736 (2007)

    ADS  Google Scholar 

  • Paster, T.P., Schauwecker, D.S., Haskin, L.A.: The behavior of some trace elements during solidification of the Skaergaard layered series. Geochim. Cosmochim. Acta. 38, 1549–1577 (1974)

    ADS  Google Scholar 

  • Pirajno, F.: Hydrothermal Processes and Mineral Systems. Springer, Amsterdam, The Netherlands (2009)

    Google Scholar 

  • Pitsch, S., Eschenmoser, A., Gedulin, B., Hui, S., Arrhenius, G.: Mineral induced formation of sugar phosphates. Orig. Life Evol. Biosph. 25, 297–334 (1995)

    ADS  Google Scholar 

  • Ricardo, A., Carrigan, M.A., Olcott, A.N., Benner, S.A.: Borate minerals stabilize ribose. Science. 303, 196 (2004)

    Google Scholar 

  • Rollinson, H.: Early Earth Systems: A Geochemical Approach. Blackwell, Malden, MA (2007)

    Google Scholar 

  • Rudnick, R.L., Gao, S.: Composition of the continental crust. In: Rudnick, R.L., Holland, H.D., Turekian, K.K. (eds.) The Crust, vol. 3, pp. 1–64. Elsevier, Amsterdam, The Netherlands (2005)

    Google Scholar 

  • Russell, M.J., Hall, A.J.: The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. Lond. 154, 377–402 (1997)

    Google Scholar 

  • Russell, M.J., Daniel, R.M., Hall, A.J., Sherringham, J.: A hydrothermally precipitated catalytic iron-sulfide membrane as a first step toward life. J. Mol. Evol. 39, 231–243 (1994)

    ADS  Google Scholar 

  • Savelyev, D.P., Kamenetsky, V.S., Danyushevsky, L.V., Botcharnikov, R.E., Kamenetsky, M.B., Park, J.-W., Portnyagin, M.V., Olin, P., Krasheninnikov, S.P., Hauff, F.: Immiscible sulfide melts in primitive oceanic magmas: evidence and implications from picrite lavas (Eastern Kamchatka, Russia). Am. Mineral. 103, 886–898 (2018)

    ADS  Google Scholar 

  • Schertl, H.-P., Mills, S.J., Maresch, W.V.: A Compendium of IMA-Approved Mineral Nomenclature. International Mineralogical Association, Melbourne (2018)

    Google Scholar 

  • Schoffeniels, E.: Anti-Chance: a Reply to Monod’s Chance and Necessity. Pergamon Press, Oxford, UK (1976)

    Google Scholar 

  • Schoonen, M.A.A., Smirnov, A., Cohn, C.: A perspective on the role of minerals in prebiotic synthesis. Ambio. 33, 539–551 (2004)

    Google Scholar 

  • Schrenk, M.O., Brazelton, W.J., Lang, S.Q.: Serpentinization, carbon, and deep life. Rev. Mineral. Geochem. 75, 575–606 (2013)

    Google Scholar 

  • Shirey, S.B., Richardson, S.H.: Start of the Wilson cycle at 3 Ga shown by diamonds from the subcontinental mantle. Science. 333, 434–436 (2011). https://doi.org/10.1126/science.1206275

    CrossRef  ADS  Google Scholar 

  • Smirnov, A., Hausner, D., Laffers, R., Strongin, D.R., Schoonen, M.A.A.: Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle. Geochem. Trans. 9, 5 (2008)

    Google Scholar 

  • Smith, J.V.: Biochemical evolution. I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars. Proc. Natl. Acad. Sci. USA. 95, 3370–3375 (1998)

    ADS  Google Scholar 

  • Smith, J.V., Arnold Jr., F.P., Parsons, I., Lee, M.R.: Biochemical evolution III: Polymerization on organophilic silica-rich surfaces, crystal-chemical modeling, formation of first cells, and geological clues. Proc. Natl. Acad. Sci. USA. 96, 3479–3485 (1999)

    ADS  Google Scholar 

  • Soai, K., Osanai, S., Kadowaki, K., Yonekubo, S., Shibata, S., Sato, I.: D- and L-quartz-promoted highly enantioselective synthesis of a chiral organic compound. J. Am. Chem. Soc. 121, 11235–11236 (1999)

    Google Scholar 

  • Storm, T.W., Holland, H.D.: The distribution of nickel in the Lambertville diabase. Geochim. Cosmochim. Acta. 11, 335–347 (1957)

    ADS  Google Scholar 

  • Summers, D.P., Chang, S.: Prebiotic ammonia from reduction of nitrite by iron (II) on the early Earth. Nature. 365, 630–632 (1990)

    ADS  Google Scholar 

  • Sun, C., Graff, M., Liang, Y.: Trace element partitioning between plagioclase and silicate melt: the importance of temperature and plagioclase composition, with implications for terrestrial and lunar magmatism. Geochim. Cosmochim. Acta. 206, 273–295 (2017)

    ADS  Google Scholar 

  • Sverjensky, D.A., Lee, N.: The great oxidation event and mineral diversification. Elements. 6, 31–36 (2010)

    Google Scholar 

  • Van Kranendonk, M.: Chapter 19 - Paleoarchean development of a continental nucleus: the east Pilbara terrane of the Pilbara Craton, Western Australia. In: Van Kranendonk, M., Bennett, V., Hoffman, E. (eds.) Earth’s Oldest Rocks, pp. 437–462. Elsevier, Dordrecht (2019). https://doi.org/10.1016/B978-0-444-63901-1.00019-8

    CrossRef  Google Scholar 

  • Veblen, D.R., Buseck, P.R.: Serpentine minerals: intergrowths and new combination structures. Science. 206, 1398–1400 (1979)

    ADS  Google Scholar 

  • Veksler, I.V., Dorfman, A.M., Dulski, P., Kamenetsky, V.S., Danyushevsky, L.V., Jeffries, T., Dingwell, D.B.: Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim. Cosmochim. Acta. 79, 20–40 (2012)

    ADS  Google Scholar 

  • Wächtershäuser, G.: Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52, 452–484 (1988a)

    Google Scholar 

  • Wächtershäuser, G.: Pyrite formation, the first energy source for life: a hypothesis. Syst. Appl. Microbiol. 10, 207–210 (1988b)

    Google Scholar 

  • Wächtershäuser, G.: Evolution of the first metabolic cycles. Proc. Natl. Acad. Sci. USA. 87, 200–204 (1990a)

    ADS  Google Scholar 

  • Wächtershäuser, G.: The case for the chemoautotrophic origin of life in an iron-sulfur world. Orig. Life Evol. Biosph. 20, 173–176 (1990b)

    ADS  Google Scholar 

  • Wächtershäuser, G.: The cradle chemistry of life: on the origin of natural products in a pyrite-pulled chemoautotrophic origin of life. Pure Appl. Chem. 65, 1343–1348 (1993)

    Google Scholar 

  • Wadsworth, F.B., Vasseur, J., Llewellin, E.W., Genareau, K., Cimarelli, C., Dingwell, D.B.: Size limits for rounding of volcanic ash particles heated by lightning. J. Geophys. Res. Solid Earth. 122, 1977–1989 (2017)

    ADS  Google Scholar 

  • Wager, L.R., Brown, G.M.: Layered Igneous Rocks. W. H. Freeman and Company, New York (1968)

    Google Scholar 

  • Weber, A.: Formation of pyrophosphate on hydroxyapatite with thioesters as condensing agents. Biosystems. 15, 183–189 (1982)

    Google Scholar 

  • Weber, A.: Prebiotic polymerization: oxidative polymerization of 2,3-dimercapto-1-propanol on the surface of iron(III) hydroxide oxide. Orig. Life Evol. Biosph. 25, 53–60 (1995)

    ADS  Google Scholar 

  • Weinstein, S.A., Yuen, D.A., Olson, P.L.: Evolution of crystal-settling in magma-chamber convection. Earth Planet. Sci. Lett. 87, 237–248 (1988)

    ADS  Google Scholar 

  • White, W.M., Klein, E.M.: Composition of the oceanic crust. In: Treatise on Geochemistry, vol. 4, 2nd edn, pp. 457–496. Elsevier, Oxford (2014)

    Google Scholar 

  • Yoder Jr., H.S.: Generation of Basaltic Magma. National Academy of Sciences Press, Washington, DC (1976)

    Google Scholar 

  • Zhabin, A.G.: Is there evolution of mineral speciation on Earth? Doklady Earth Sci. Sect. 247, 142–144 (1981)

    Google Scholar 

  • Ziegler, E.W., Kim, H.-J., Benner, S.A.: Molybdenum (VI)-catalyzed rearrangement of prebiotic carbohydrates in formamide, a candidate prebiotic solvent. Astrobiology. 18, 1159–1170 (2018)

    ADS  Google Scholar 

Download references

Acknowledgments

Studies of mineral evolution and mineral ecology have been supported by the Alfred P. Sloan Foundation, the W. M. Keck Foundation, the John Templeton Foundation, the NASA Astrobiology Institute ENIGMA team, a private foundation, and the Carnegie Institution for Science. Any opinions, findings, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Hazen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Hazen, R.M., Morrison, S.M. (2021). Mineralogical Environments of the Hadean Eon: Rare Elements Were Ubiquitous in Surface Sites of Rock-Forming Minerals. In: Neubeck, A., McMahon, S. (eds) Prebiotic Chemistry and the Origin of Life. Advances in Astrobiology and Biogeophysics. Springer, Cham. https://doi.org/10.1007/978-3-030-81039-9_2

Download citation