Skip to main content

BiodentineTM in Inflammation and Pain Control

  • Chapter
  • First Online:
Biodentine™

Abstract

Dental pulp inflammation and pain mainly arise following bacterial infection or infiltration/diffusion of their toxins. Just like any other tissue, the dental pulp may withstand mild or moderate inflammation, but severe inflammation may be deleterious to the dental pulp due to its location within an inextensible environment with rigid dentinal walls. This may lead to severe pain and discomfort to the patient and/or tissue destruction hindering pulp tissue regeneration. Thus, it is important to eliminate the pathogens and prevent their infiltration into the pulp to avoid a transition to chronic inflammation with subsequent requirement of root canal therapy. Caries excavation aims at eliminating the pathogens in the carious tissue. However, this elimination is never complete and explains why, in addition to providing a good marginal seal protecting the pulp from bacteria infiltration from the saliva, the restorative material’s antibacterial potential is pivotal to eliminate residual and infiltrating bacteria.

In this chapter, we introduce dental pulp innervation and pulpal pain physiology (with insights into the role of the odontoblast in sensory perception) and highlight the effectiveness of Biodentine in controlling both dental pulp inflammation and subsequent pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cadden SW, Lisney SJW, Matthews B. Thresholds to electrical stimulation of nerves in cat canine tooth-pulp with Aβ-, Aδ- and C-fibre conduction velocities. Brain Res. 1983;261:31–41.

    Article  PubMed  Google Scholar 

  2. Reader A, Foreman DW. An ultrastructural qualitative investigation of human intradental innervation. J Endod. 1981;7:161–8.

    Article  PubMed  Google Scholar 

  3. Lee C, Ramsey A, De Brito-Gariepy H, Michot B, Podborits E, Melnyk J, Gibbs JL. Molecular, cellular and behavioral changes associated with pathological pain signaling occur after dental pulp injury. Mol Pain. 2017;13:1744806917715173.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Olgart L. Neural control of pulpal blood flow. Crit Rev Oral Biol Med. 1996;7:159–71.

    Article  PubMed  Google Scholar 

  5. Haug SR, Heyeraas KJ. Modulation of dental inflammation by the sympathetic nervous system. J Dent Res. 2006;85:488–95.

    Article  PubMed  Google Scholar 

  6. Caviedes-Bucheli J, Muñoz HR, Azuero-Holguín MM, Ulate E. Neuropeptides in dental pulp: the silent protagonists. J Endod. 2008;34:773–88.

    Article  PubMed  Google Scholar 

  7. El Karim IA, Lamey P-J, Ardill J, Linden GJ, Lundy FT. Vasoactive intestinal polypeptide (VIP) and VPAC1 receptor in adult human dental pulp in relation to caries. Arch Oral Biol. 2006;51:849–55.

    Article  PubMed  Google Scholar 

  8. Luthman J, Luthman D, Hökfelt T. Occurrence and distribution of different neurochemical markers in the human dental pulp. Arch Oral Biol. 1992;37:193–208.

    Article  PubMed  Google Scholar 

  9. Rodd HD, Boissonade FM. Comparative immunohistochemical analysis of the peptidergic innervation of human primary and permanent tooth pulp. Arch Oral Biol. 2002;47:375–85.

    Article  PubMed  Google Scholar 

  10. Lipton JA, Ship JA, Larach-Robinson D. Estimated prevalence and distribution of reported orofacial pain in the United States. J Am Dent Assoc. 1993;1939(124):115–21.

    Article  Google Scholar 

  11. Merskey H, Bogduk N. IASP taxonomy. Update from pain terms, a curr list with defin notes usage. Classif chronic pain. 2nd ed. IASP Task Force Taxon; 2012. pp. 209–14.

    Google Scholar 

  12. Nair PNR, Schroeder HE. Number and size spectra of non-myelinated axons of human premolars. Anat Embryol (Berl). 1995;192:35–41.

    Article  Google Scholar 

  13. Nair PN, Luder HU, Schroeder HE. Number and size-spectra of myelinated nerve fibers of human premolars. Anat Embryol (Berl). 1992;186:563–71.

    Article  Google Scholar 

  14. Henry MA, Luo S, Levinson SR. Unmyelinated nerve fibers in the human dental pulp express markers for myelinated fibers and show sodium channel accumulations. BMC Neurosci. 2012;13:29.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bae YC, Yoshida A. Ultrastructural basis for craniofacial sensory processing in the brainstem. Int Rev Neurobiol. 2011;97:99–141.

    Article  PubMed  Google Scholar 

  16. Närhi M, Bjørndal L, Pigg M, Fristad I, Haug S. Acute dental pain I: pulpal and dentinal pain. Nor Tannlegeforen Tid. 2016;126:10–8.

    Google Scholar 

  17. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol. 2006;68:619–47.

    Article  PubMed  Google Scholar 

  18. Voets T, Nilius B. TRPs make sense. J Membr Biol. 2003;192:1–8.

    Article  PubMed  Google Scholar 

  19. Corey DP, García-Añoveros J, Holt JR, Kwan KY, Lin S-Y, Vollrath MA, Amalfitano A, Cheung EL-M, Derfler BH, Duggan A, et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature. 2004;432:723–30.

    Article  PubMed  Google Scholar 

  20. Park C-K, Kim MS, Fang Z, Li HY, Jung SJ, Choi S-Y, Lee SJ, Park K, Kim JS, Oh SB. Functional expression of thermo-transient receptor potential channels in dental primary afferent neurons: implication for tooth pain. J Biol Chem. 2006;281:17304–11.

    Article  PubMed  Google Scholar 

  21. Bakri MM, Yahya F, Munawar KMM, Kitagawa J, Hossain MZ. Transient receptor potential vanilloid 4 (TRPV4) expression on the nerve fibers of human dental pulp is upregulated under inflammatory condition. Arch Oral Biol. 2018;89:94–8.

    Article  PubMed  Google Scholar 

  22. Ichikawa H, Kim H-J, Shuprisha A, Shikano T, Tsumura M, Shibukawa Y, Tazaki M. Voltage-dependent sodium channels and calcium-activated potassium channels in human odontoblasts in vitro. J Endod. 2012;38:1355–62.

    Article  PubMed  Google Scholar 

  23. Magloire H, Lesage F, Couble ML, Lazdunski M, Bleicher F. Expression and localization of TREK-1 K+ channels in human odontoblasts. J Dent Res. 2003;82:542–5.

    Article  PubMed  Google Scholar 

  24. Allard B, Magloire H, Couble ML, Maurin JC, Bleicher F. Voltage-gated sodium channels confer excitability to human odontoblasts: possible role in tooth pain transmission. J Biol Chem. 2006;281:29002–10.

    Article  PubMed  Google Scholar 

  25. El Karim IA, Linden GJ, Curtis TM, About I, McGahon MK, Irwin CR, Lundy FT. Human odontoblasts express functional thermo-sensitive TRP channels: implications for dentin sensitivity. Pain. 2011;152:2211–23.

    Article  PubMed  Google Scholar 

  26. Shibukawa Y, Sato M, Kimura M, Sobhan U, Shimada M, Nishiyama A, Kawaguchi A, Soya M, Kuroda H, Katakura A, et al. Odontoblasts as sensory receptors: transient receptor potential channels, pannexin-1, and ionotropic ATP receptors mediate intercellular odontoblast-neuron signal transduction. Pflugers Arch. 2015;467:843–63.

    Article  PubMed  Google Scholar 

  27. Magloire H, Maurin JC, Couble ML, Shibukawa Y, Tsumura M, Thivichon-Prince B, Bleicher F. Topical review. Dental pain and odontoblasts: facts and hypotheses. J Orofac Pain. 2010;24:335–49.

    PubMed  Google Scholar 

  28. Julius D, Basbaum AI. Molecular mechanisms of nociception. Nature. 2001;413:203–10.

    Article  PubMed  Google Scholar 

  29. Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature. 1999;398:436–41.

    Article  PubMed  Google Scholar 

  30. Güler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M. Heat-evoked activation of the ion channel, TRPV4. J Neurosci. 2002;22:6408–14.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, Wright JE, Jerman JC, Walhin J-P, Ooi L, et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature. 2002;418:186–90.

    Article  PubMed  Google Scholar 

  32. Liedtke W, Choe Y, Martí-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 2000;103:525–35.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Muraki K, Shigekawa M, Imaizumi Y. Chapter 28: A new insight into the function of TRPV2 in circulatory organs. In: Liedtke WB, Heller S, editors. TRP ion channel function in sensory transduction and cellular signaling cascades. Boca Raton, FL: CRC Press/Taylor & Francis; 2007.

    Google Scholar 

  34. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, Earley TJ, Hergarden AC, Andersson DA, Hwang SW, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003;112:819–29.

    Article  PubMed  Google Scholar 

  35. McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 2002;416:52–8.

    Article  PubMed  Google Scholar 

  36. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, et al. A TRP channel that senses cold stimuli and menthol. Cell. 2002;108:705–15.

    Article  PubMed  Google Scholar 

  37. Jordt S-E, Bautista DM, Chuang H-H, McKemy DD, Zygmunt PM, Högestätt ED, Meng ID, Julius D. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature. 2004;427:260–5.

    Article  PubMed  Google Scholar 

  38. El Karim I, McCrudden MTC, Linden GJ, Abdullah H, Curtis TM, McGahon M, About I, Irwin C, Lundy FT. TNF-α-induced p38MAPK activation regulates TRPA1 and TRPV4 activity in odontoblast-like cells. Am J Pathol. 2015;185:2994–3002.

    Article  PubMed  Google Scholar 

  39. Wen W, Que K, Zang C, Wen J, Sun G, Zhao Z, Li Y. Expression and distribution of three transient receptor potential vanilloid (TRPV) channel proteins in human odontoblast-like cells. J Mol Histol. 2017;48:367–77.

    Article  PubMed  Google Scholar 

  40. Tazawa K, Ikeda H, Kawashima N, Okiji T. Transient receptor potential melastatin (TRPM) 8 is expressed in freshly isolated native human odontoblasts. Arch Oral Biol. 2017;75:55–61.

    Article  PubMed  Google Scholar 

  41. Zhu X, Jiang M, Peyton M, Boulay G, Hurst R, Stefani E, Birnbaumer L. Trp, a novel mammalian gene family essential for agonist-activated capacitative Ca2+ entry. Cell. 1996;85:661–71.

    Article  PubMed  Google Scholar 

  42. Rowland KC, Kanive CB, Wells JE, Hatton JF. TRPM2 immunoreactivity is increased in fibroblasts, but not nerves, of symptomatic human dental pulp. J Endod. 2007;33:245–8.

    Article  PubMed  Google Scholar 

  43. El Karim IA, Linden GJ, Curtis TM, About I, McGahon MK, Irwin CR, Killough SA, Lundy FT. Human dental pulp fibroblasts express the “cold-sensing” transient receptor potential channels TRPA1 and TRPM8. J Endod. 2011;37:473–8.

    Article  PubMed  Google Scholar 

  44. Yumoto H, Hirao K, Hosokawa Y, Kuramoto H, Takegawa D, Nakanishi T, Matsuo T. The roles of odontoblasts in dental pulp innate immunity. Jpn Dent Sci Rev. 2018;54:105–17.

    Article  PubMed  PubMed Central  Google Scholar 

  45. El Karim IA, Linden GJ, Irwin CR, Lundy FT. Neuropeptides regulate expression of angiogenic growth factors in human dental pulp fibroblasts. J Endod. 2009;35:829–33.

    Article  PubMed  Google Scholar 

  46. Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J. 1990;265:621–36.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hippenstiel S, Krüll M, Ikemann A, Risau W, Clauss M, Suttorp N. VEGF induces hyperpermeability by a direct action on endothelial cells. Am J Phys. 1998;274:L678–84.

    Google Scholar 

  48. Chmilewsky F, Jeanneau C, Laurent P, About I. Pulp fibroblasts synthesize functional complement proteins involved in initiating dentin-pulp regeneration. Am J Pathol. 2014;184:1991–2000.

    Article  PubMed  Google Scholar 

  49. Awawdeh L, Lundy FT, Shaw C, Lamey PJ, Linden GJ, Kennedy JG. Quantitative analysis of substance P, neurokinin A and calcitonin gene-related peptide in pulp tissue from painful and healthy human teeth. Int Endod J. 2002;35:30–6.

    Article  PubMed  Google Scholar 

  50. Byers MR, Taylor PE, Khayat BG, Kimberly CL. Effects of injury and inflammation on pulpal and periapical nerves. J Endod. 1990;16:78–84.

    Article  PubMed  Google Scholar 

  51. El Karim IA, Lamey P-J, Linden GJ, Awawdeh LA, Lundy FT. Caries-induced changes in the expression of pulpal neuropeptide Y. Eur J Oral Sci. 2006;114:133–7.

    Article  PubMed  Google Scholar 

  52. Lundy FT, Linden GJ. Neuropeptides and neurogenic mechanisms in oral and periodontal inflammation. Crit Rev Oral Biol Med. 2004;15:82–98.

    Article  PubMed  Google Scholar 

  53. Mickle AD, Shepherd AJ, Mohapatra DP. Nociceptive TRP channels: sensory detectors and transducers in multiple pain pathologies. Pharmaceuticals (Basel). 2016;9:72.

    Article  Google Scholar 

  54. Chung M-K, Lee J, Duraes G, Ro JY. Lipopolysaccharide-induced pulpitis up-regulates TRPV1 in trigeminal ganglia. J Dent Res. 2011;90:1103–7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Camps J, Déjou J, Rémusat M, About I. Factors influencing pulpal response to cavity restorations. Dent Mater. 2000;16:432–40.

    Article  PubMed  Google Scholar 

  56. Bhavana V, Chaitanya KP, Gandi P, Patil J, Dola B, Reddy RB. Evaluation of antibacterial and antifungal activity of new calcium-based cement (Biodentine) compared to MTA and glass ionomer cement. J Conserv Dent. 2015;18:44–6.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Raskin A, Eschrich G, Dejou J, About I. In vitro microleakage of Biodentine as a dentin substitute compared to Fuji II LC in cervical lining restorations. J Adhes Dent. 2012;14:535–42.

    PubMed  Google Scholar 

  58. Odabaş ME, Bani M, Tirali RE. Shear bond strengths of different adhesive systems to Biodentine. Sci World J. 2013;2013:626103.

    Article  Google Scholar 

  59. Tsesis I, Elbahary S, Venezia NB, Rosen E. Bacterial colonization in the apical part of extracted human teeth following root-end resection and filling: a confocal laser scanning microscopy study. Clin Oral Investig. 2018;22:267–74.

    Article  PubMed  Google Scholar 

  60. Elbahary S, Haj Yahya S, Koç C, Shemesh H, Rosen E, Tsesis I. Bacterial Colonization and Proliferation in Furcal Perforations Repaired by Different Materials: A Confocal Laser Scanning Microscopy Study. Applied Sciences. 2021;11(8):3403.

    Google Scholar 

  61. Lertmalapong P, Jantarat J, Srisatjaluk RL, Komoltri C. Bacterial leakage and marginal adaptation of various bioceramics as apical plug in open apex model. J Investig Clin Dent. 2019;10:e12371.

    Article  PubMed  Google Scholar 

  62. Giraud T, Jeanneau C, Bergmann M, Laurent P, About I. Tricalcium silicate capping materials modulate pulp healing and inflammatory activity in vitro. J Endod. 2018;44:1686–91.

    Article  PubMed  Google Scholar 

  63. Jeanneau C, Laurent P, Rombouts C, Giraud T, About I. Light-cured tricalcium silicate toxicity to the dental pulp. J Endod. 2017;43:2074–80.

    Article  PubMed  Google Scholar 

  64. Sommer C, Kress M. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett. 2004;361:184–7.

    Article  PubMed  Google Scholar 

  65. El Karim IA, McCrudden MTC, McGahon MK, Curtis TM, Jeanneau C, Giraud T, Irwin CR, Linden GJ, Lundy FT, About I. Biodentine reduces tumor necrosis factor alpha-induced TRPA1 expression in odontoblast like cells. J Endod. 2016;42:589–95.

    Article  PubMed  Google Scholar 

  66. Eraković M, Duka M, Bekić M, Tomić S, Ismaili B, Vučević D, Čolić M. Anti-inflammatory and immunomodulatory effects of Biodentine on human periapical lesion cells in culture. Int Endod J. 2020;53:1398–412.

    Article  PubMed  Google Scholar 

  67. Laurent P, Camps J, About I. Biodentine(™) induces TGF-β1 release from human pulp cells and early dental pulp mineralization. Int Endod J. 2012;45:439–48.

    Google Scholar 

  68. Cooper PR, Holder MJ, Smith AJ. Inflammation and regeneration in the dentin-pulp complex: a double-edged sword. J Endod. 2014;40:S46–51.

    Article  PubMed  Google Scholar 

  69. Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Investig. 2000;80:617.

    Article  PubMed  Google Scholar 

  70. Niggli V. Signaling to migration in neutrophils: importance of localized pathways. Int J Biochem Cell Biol. 2003;35:1619–38.

    Article  PubMed  Google Scholar 

  71. da Fonseca TS, Silva GF, Guerreiro-Tanomaru JM, Delfino MM, Sasso-Cerri E, Tanomaru-Filho M, Cerri PS. Biodentine and MTA modulate immunoinflammatory response favoring bone formation in sealing of furcation perforations in rat molars. Clin Oral Investig. 2019;23:1237–52.

    Article  PubMed  Google Scholar 

  72. Silva LAB, Pieroni KAMG, Nelson-Filho P, Silva RAB, Hernandéz-Gatón P, Lucisano MP, Paula-Silva FWG, de Queiroz AM. Furcation perforation: periradicular tissue response to Biodentine as a repair material by histopathologic and indirect immunofluorescence analyses. J Endod. 2017;43:1137–42.

    Article  PubMed  Google Scholar 

  73. Nowicka A, Lipski M, Parafiniuk M, Sporniak-Tutak K, Lichota D, Kosierkiewicz A, Kaczmarek W, Buczkowska-Radlińska J. Response of human dental pulp capped with Biodentine and mineral trioxide aggregate. J Endod. 2013;39:743–7.

    Article  PubMed  Google Scholar 

  74. Holiel AA, Mahmoud EM, Abdel-Fattah WM, Kawana KY. Histological evaluation of the regenerative potential of a novel treated dentin matrix hydrogel in direct pulp capping. Clin Oral Investig. 2021;25:2101–12.

    Google Scholar 

  75. Glickman GN, Schweitzer JL. Endodontic diagnosis. Chicago, IL: American Association of Endodontists; 2013.

    Google Scholar 

  76. Duncan HF, Galler KM, Tomson PL, Simon S, El-Karim I, Kundzina R, Krastl G, Dammaschke T, Fransson H, Markvart M, et al. European Society of Endodontology position statement: management of deep caries and the exposed pulp. Int Endod J. 2019;52:923–34.

    Article  PubMed  Google Scholar 

  77. Villat C, Grosgogeat B, Seux D, Farge P. Conservative approach of a symptomatic carious immature permanent tooth using a tricalcium silicate cement (Biodentine): a case report. Restor Dent Endod. 2013;38:258–62.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Brizuela C, Ormeño A, Cabrera C, Cabezas R, Silva CI, Ramírez V, Mercade M. Direct pulp capping with calcium hydroxide, mineral trioxide aggregate, and Biodentine in permanent young teeth with caries: a randomized clinical trial. J Endod. 2017;43:1776–80.

    Article  PubMed  Google Scholar 

  79. Hegde S, Sowmya B, Mathew S, Bhandi SH, Nagaraja S, Dinesh K. Clinical evaluation of mineral trioxide aggregate and Biodentine as direct pulp capping agents in carious teeth. J Conserv Dent. 2017;20:91–5.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Taha NA, Abdelkhader SZ. Outcome of full pulpotomy using Biodentine in adult patients with symptoms indicative of irreversible pulpitis. Int Endod J. 2018;51:819–28.

    Article  PubMed  Google Scholar 

  81. Taha NA, Abdulkhader SZ. Full pulpotomy with Biodentine in symptomatic young permanent teeth with carious exposure. J Endod. 2018;44:932–7.

    Article  PubMed  Google Scholar 

  82. Bakhtiar H, Nekoofar MH, Aminishakib P, Abedi F, Naghi Moosavi F, Esnaashari E, Azizi A, Esmailian S, Ellini MR, Mesgarzadeh V, et al. Human pulp responses to partial pulpotomy treatment with TheraCal as compared with Biodentine and ProRoot MTA: a clinical trial. J Endod. 2017;43:1786–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fionnuala T. Lundy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lundy, F.T., Giraud, T., El-Karim, I.A., About, I. (2022). BiodentineTM in Inflammation and Pain Control. In: About, I. (eds) Biodentine™. Springer, Cham. https://doi.org/10.1007/978-3-030-80932-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80932-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80931-7

  • Online ISBN: 978-3-030-80932-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics