Skip to main content

BiodentineTM Physico-Chemical Properties: From Interactions with Dental Tissues to Ageing

  • Chapter
  • First Online:
Biodentine™

Abstract

Biodentine has distinguished features present in its chemical composition as well as in its wide scope of clinical applications ranging from dentine replacement to root repair. Such features have placed Biodentine in a distinctive category, bridging restorative and endodontic applications. Understanding the chemistry and microstructure of Biodentine is essential to appreciate the nature of its relationship with dentine, and its performance in different physiological conditions. In this chapter, we discuss the most important physico-chemical properties of Biodentine correlating them to the clinical performance of the cement. This narrative also elaborates on the interactive relation of Biodentine with the surrounding environment and dentine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C2S:

Di-calcium silicate

C3S:

Tri-calcium silicate

CH:

Calcium hydroxide

CSC:

Calcium silicate cement

CSH:

Calcium silicate hydrate

GIC:

Glass ionomer cements

References

  1. Torabinejad M, White DJ, Inventors, Loma Linda University, assignee. Tooth filling material and method of use. United States patent US 5,769,638, 23 Jun 1998.

    Google Scholar 

  2. Rajasekharan S, Martens LC, Cauwels RG, Verbeeck RM. Biodentine™ material characteristics and clinical applications: a review of the literature. Eur Arch Paediatr Dent. 2014;15(3):147–58.

    Article  PubMed  Google Scholar 

  3. Jennings HM, Parrott LJ. Microstructural analysis of hydrated alite paste. J Mater Sci. 1986;21(11):4053–9.

    Article  Google Scholar 

  4. Taylor HF. Proposed structure for calcium silicate hydrate gel. J Am Ceram Soc. 1986;69(6):464–7.

    Article  Google Scholar 

  5. Taylor H. Cement chemistry. London: Thomas Telford Publishing; 1997.

    Book  Google Scholar 

  6. Gandolfi MG, Siboni F, Polimeni A, Bossù M, Riccitiello F, Rengo S, Prati C. In vitro screening of the apatite-forming ability, biointeractivity and physical properties of a tricalcium silicate material for endodontics and restorative dentistry. Dent J. 2013;1(4):41–60.

    Article  Google Scholar 

  7. Camilleri J. Investigation of Biodentine as dentine replacement material. J Dent. 2013;41(7):600–10.

    Article  PubMed  Google Scholar 

  8. Camilleri J, Laurent P, About I. Hydration of Biodentine, Theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures. J Endod. 2014;40(11):1846–54.

    Article  PubMed  Google Scholar 

  9. Beaudoin O. Hydration, setting and hardening of Portland cement. In: Hewlett P, Liska M, editors. Lea’s chemistry of cement and concrete. Oxford: Butterworth-Heinemann; 2019.

    Google Scholar 

  10. Kjellsen KO, Justnes H. Revisiting the microstructure of hydrated tricalcium silicate––a comparison to Portland cement. Cem Concr Compos. 2004;26(8):947–56.

    Article  Google Scholar 

  11. Pinson MB, Masoero E, Bonnaud PA, Manzano H, Ji Q, Yip S, Thomas JJ, Bazant MZ, Van Vliet KJ, Jennings HM. Hysteresis from multiscale porosity: modeling water sorption and shrinkage in cement paste. Phys Rev Appl. 2015;3(6):064009.

    Article  Google Scholar 

  12. Roosz C, Gaboreau S, Grangeon S, Prêt D, Montouillout V, Maubec N, Ory S, Blanc P, Vieillard P, Henocq P. Distribution of water in synthetic calcium silicate hydrates. Langmuir. 2016;32(27):6794–805.

    Article  PubMed  Google Scholar 

  13. Ha WN, Nicholson T, Kahler B, Walsh LJ. Mineral trioxide aggregate—a review of properties and testing methodologies. Materials. 2017;10(11):1261.

    Article  PubMed Central  Google Scholar 

  14. Butt N, Talwar S, Chaudhry S, Nawal RR, Yadav S, Bali A. Comparison of physical and mechanical properties of mineral trioxide aggregate and Biodentine. Indian J Dent Res. 2014;25(6):692.

    Article  PubMed  Google Scholar 

  15. Lucas CD, Viapiana R, Bosso-Martelo R, Guerreiro-Tanomaru JM, Camilleri J, Tanomaru-Filho M. Physicochemical properties and dentin bond strength of a tricalcium silicate-based retrograde material. Braz Dent J. 2017;28(1):51–6.

    Article  PubMed  Google Scholar 

  16. Ha WN, Nicholson TM, Kahler B, Walsh LJ. Rheological characterization as an alternative method to indentation for determining the setting time of restorative and endodontic cements. Materials. 2017;10(12):1451.

    Article  PubMed Central  Google Scholar 

  17. Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent Mater. 2013;29(2):e20–8.

    Article  PubMed  Google Scholar 

  18. Kaup M, Schäfer E, Dammaschke T. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 2015;11(1):1–8.

    Article  Google Scholar 

  19. Jang YE, Lee BN, Koh JT, Park YJ, Joo NE, Chang HS, Hwang IN, Oh WM, Hwang YC. Cytotoxicity and physical properties of tricalcium silicate-based endodontic materials. Restor Dent Endod. 2014;39(2):89–94.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dawood AE, Manton DJ, Parashos P, Wong RH, Palamara JE, Stanton DP, Reynolds EC. The physical properties and ion release of CPP-ACP-modified calcium silicate-based cements. Aust Dent J. 2015;60(4):434–44.

    Article  PubMed  Google Scholar 

  21. Villat C, Tran VX, Pradelle-Plasse N, Ponthiaux P, Wenger F, Grosgogeat B, Colon P. Impedance methodology: a new way to characterize the setting reaction of dental cements. Dent Mater. 2010;26(12):1127–32.

    Article  PubMed  Google Scholar 

  22. Soroka I. Portland cement paste and concrete. London: Macmillan International Higher Education; 1979.

    Book  Google Scholar 

  23. Gopalan R, Venkappayya D, Nagarajan S. Textbook of engineering chemistry. New Delhi: Vikas Publishing House; 2010.

    Google Scholar 

  24. Camilleri J, Kralj P, Veber M, Sinagra E. Characterization and analyses of acid-extractable and leached trace elements in dental cements. Int Endod J. 2012;45(8):737–43.

    Article  PubMed  Google Scholar 

  25. El Elaouni B, Benkaddour M. Hydration of C3A in the presence of CaCO3. J Therm Anal Calorim. 1997;48(4):893–901.

    Article  Google Scholar 

  26. Huan Z, Chang J. Novel bioactive composite bone cements based on the β-tricalcium phosphate–monocalcium phosphate monohydrate composite cement system. Acta Biomater. 2009;5(4):1253–64.

    Article  PubMed  Google Scholar 

  27. Alhodiry W, Lyons MF, Chadwick RG. Effect of saliva and blood contamination on the bi-axial flexural strength and setting time of two calcium-silicate based cements: Portland cement and Biodentine. Eur J Prosthodont Restor Dent. 2014;22:20–3.

    PubMed  Google Scholar 

  28. Moosani GKR, Manduri CS, Sampathi NR, et al. Evaluation of setting time of mineral trioxide aggregate and Biodentine in the presence of human blood and minimal essential media—an in vitro study. J Evid Based Med Healthc. 2017;4(94):5849–52. https://doi.org/10.18410/jebmh/2017/1177.

    Article  Google Scholar 

  29. Koutroulis A, Batchelor H, Kuehne SA, Cooper PR, Camilleri J. Investigation of the effect of the water to powder ratio on hydraulic cement properties. Dent Mater. 2019;35(8):1146–54.

    Article  PubMed  Google Scholar 

  30. Camilleri J. Evaluation of selected properties of mineral trioxide aggregate sealer cement. J Endod. 2009;35(10):1412–7.

    Article  PubMed  Google Scholar 

  31. Aligizaki KK. Pore structure of cement-based materials: testing, interpretation and requirements. London: CRC Press; 2005.

    Book  Google Scholar 

  32. Hearn N, Hooton D, Nokken M. Pore structure, permeability, and penetration resistance characteristics of concrete. In: Lamond JF, Pielert JH, editors. Significance of tests and properties of concrete and concrete-making materials. West Conshohocken, PA: ASTM; 2006. p. 238–53.

    Chapter  Google Scholar 

  33. Camilleri J, Grech L, Galea K, Keir D, Fenech M, Formosa L, Damidot D, Mallia B. Porosity and root dentine to material interface assessment of calcium silicate-based root-end filling materials. Clin Oral Investig. 2014;18(5):1437–46.

    Article  PubMed  Google Scholar 

  34. Milutinović-Smiljanić S, Ilić D, Danilović V, Antonijević Đ. Advantages and downsides of Biodentine: satisfactory mechanical properties and radiopacity not meeting ISO standard. Vojnosanit Pregl. 2020:14. https://doi.org/10.2298/VSP191212014M.

  35. Al-Sherbiny IM, Farid MH, Abu-Seida AM, Motawea IT, Bastawy HA. Chemico-physical and mechanical evaluation of three calcium silicate-based pulp capping materials. Saudi Dent J. 2020; https://doi.org/10.1016/j.sdentj.2020.02.001.

  36. Gandolfi MG, Siboni F, Botero T, Bossù M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater. 2015;13(1):43–60.

    PubMed  Google Scholar 

  37. De Souza ET, Nunes Tameirão MD, Roter JM, De Assis JT, De Almeida NA, De-Deus GA. Tridimensional quantitative porosity characterization of three set calcium silicate-based repair cements for endodontic use. Microsc Res Tech. 2013;76(10):1093–8.

    Article  PubMed  Google Scholar 

  38. Guerrero F, Berástegui E. Porosity analysis of MTA and Biodentine cements for use in endodontics by using microcomputed tomography. J Clin Exp Dent. 2018;10(3):e237.

    PubMed  PubMed Central  Google Scholar 

  39. Torres FF, Guerreiro-Tanomaru JM, Bosso-Martelo R, Chavez-Andrade GM, Tanomaru FM. Solubility, porosity and fluid uptake of calcium silicate-based cements. J Appl Oral Sci. 2018;26 https://doi.org/10.1590/1678-7757-2017-0465.

  40. Cook RA, Hover KC. Mercury porosimetry of hardened cement pastes. Cem Concr Res. 1999;29(6):933–43.

    Article  Google Scholar 

  41. Bossa N, Chaurand P, Vicente J, Borschneck D, Levard C, Aguerre-Chariol O, Rose J. Micro-and nano-X-ray computed-tomography: a step forward in the characterization of the pore network of a leached cement paste. Cem Concr Res. 2015;67:138–47.

    Article  Google Scholar 

  42. Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater. 2013;29(5):580–93.

    Article  PubMed  Google Scholar 

  43. Bertolini L, Elsener B, Pedeferri P, Redaelli E, Polder R. Transport processes in concrete. In: Corrosion of steel in concrete: prevention, diagnosis, repair. Weinheim: Wiley-VCH Verlag GmbH & Co; 2013. p. 21–48.

    Chapter  Google Scholar 

  44. Mustafa R, Alshali RZ, Silikas N. The effect of desiccation on water sorption, solubility and hygroscopic volumetric expansion of dentine replacement materials. Dent Mater. 2018;34(8):e205–13.

    Article  PubMed  Google Scholar 

  45. Singh S, Podar R, Dadu S, Kulkarni G, Purba R. Solubility of a new calcium silicate-based root-end filling material. J Conserv Dent. 2015;18(2):149.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Atmeh AR. Investigating the effect of bicarbonate ion on the structure and strength of calcium silicate-based dental restorative material—Biodentine. Clin Oral Investig. 2020;26:10.

    Google Scholar 

  47. Ochoa-Rodríguez VM, Tanomaru-Filho M, Rodrigues EM, Guerreiro-Tanomaru JM, Spin-Neto R, Faria G. Addition of zirconium oxide to Biodentine increases radiopacity and does not alter its physicochemical and biological properties. J Appl Oral Sci. 2019;27 https://doi.org/10.1590/1678-7757-2018-0429.

  48. Song S, Jennings HM. Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem Concr Res. 1999;29(2):159–70.

    Article  Google Scholar 

  49. Natale LC, Rodrigues MC, Xavier TA, Simões A, De Souza DN, Braga RR. Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping. Int Endod J. 2015;48(1):89–94.

    Article  PubMed  Google Scholar 

  50. Han L, Okiji T. Bioactivity evaluation of three calcium silicate-based endodontic materials. Int Endod J. 2013;46(9):808–14.

    Article  PubMed  Google Scholar 

  51. Han L, Okiji T. Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J. 2011;44(12):1081–7.

    Article  PubMed  Google Scholar 

  52. Bortoluzzi EA, Broon NJ, Duarte MA, de Oliveira Demarchi AC, Bramante CM. The use of a setting accelerator and its effect on pH and calcium ion release of mineral trioxide aggregate and white Portland cement. J Endod. 2006;32(12):1194–7.

    Article  Google Scholar 

  53. Saito T, Toyooka H, Ito S, Crenshaw MA. In vitro study of remineralization of dentin: effects of ions on mineral induction by decalcified dentin matrix. Caries Res. 2003;37(6):445–9.

    Article  PubMed  Google Scholar 

  54. Ramachandran VS. Differential thermal method of estimating calcium hydroxide in calcium silicate and cement pastes. Cem Concr Res. 1979;9(6):677–84.

    Article  Google Scholar 

  55. Luo Z, Li D, Kohli MR, Yu Q, Kim S, He WX. Effect of Biodentine™ on the proliferation, migration and adhesion of human dental pulp stem cells. J Dent. 2014;42(4):490–7.

    Article  PubMed  Google Scholar 

  56. Niu LN, Jiao K, Zhang W, Camilleri J, Bergeron BE, Feng HL, Mao J, Chen JH, Pashley DH, Tay FR. A review of the bioactivity of hydraulic calcium silicate cements. J Dent. 2014;42(5):517–33.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Qu H, Wei M. The effect of temperature and initial pH on biomimetic apatite coating. J Biomed Mater Res B Appl Biomater. 2008;87:204–12.

    Article  PubMed  Google Scholar 

  58. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  PubMed  Google Scholar 

  59. Kim JR, Nosrat A, Fouad AF. Interfacial characteristics of Biodentine and MTA with dentine in simulated body fluid. J Dent. 2015;43(2):241–7.

    Article  PubMed  Google Scholar 

  60. Fogh-Andersen N, Altura BM, Altura BT, Siggaard-Andersen O. Composition of interstitial fluid. Clin Chem. 1995;41(10):1522–5.

    Article  PubMed  Google Scholar 

  61. Kumar B, Kashyap N, Avinash A, Chevvuri R, Sagar MK, Kumar S. The composition, function and role of saliva in maintaining oral health: a review. Int J Contemp Dent Med Rev. 2017; https://doi.org/10.15713/ins.ijcdmr.121.

  62. Rockenbach MI, Marinho SA, Veeck EB, Lindemann L, Shinkai RS. Salivary flow rate, pH, and concentrations of calcium, phosphate, and sIgA in Brazilian pregnant and non-pregnant women. Head Face Med. 2006;2(1):44.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Camilleri J. Hydration characteristics of Biodentine and Theracal used as pulp capping materials. Dent Mater. 2014;30(7):709–15.

    Article  PubMed  Google Scholar 

  64. Saghiri MA, Shabani A, Asatourian A, Sheibani N. Storage medium affects the surface porosity of dental cements. J Clin Diagn Res. 2017;11(8):ZC116.

    PubMed  PubMed Central  Google Scholar 

  65. Atmeh AR, Chong EZ, Richard G, Boyde A, Festy F, Watson TF. Calcium silicate cement-induced remineralisation of totally demineralised dentine in comparison with glass ionomer cement: tetracycline labelling and two-photon fluorescence microscopy. J Microsc. 2015;257(2):151–60.

    Article  PubMed  Google Scholar 

  66. Matsushita F, Aono Y, Shibata S. Carbonation degree of autoclaved aerated concrete. Cem Concr Res. 2000;30(11):1741–5.

    Article  Google Scholar 

  67. Atmeh A. Optical characterisation of the interaction between calcium-silicate based dental restorative materials and dentine. Doctoral dissertation, King’s College London, University of London, 2013.

    Google Scholar 

  68. Kapusuz D, Ercan B. Calcium phosphate mineralization on calcium carbonate particle incorporated silk-fibroin composites. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. 2019;15(3):301–6.

    Article  Google Scholar 

  69. Olah LA, Borbas LA. Properties of calcium carbonate-containing composite scaffolds. Acta Bioeng Biomech. 2008;10(1):61.

    PubMed  Google Scholar 

  70. Matta C, Szűcs-Somogyi C, Kon E, Robinson D, Neufeld T, Altschuler N, Berta A, Hangody L, Veréb Z, Zákány R. Osteogenic differentiation of human bone marrow-derived mesenchymal stem cells is enhanced by an aragonite scaffold. Differentiation. 2019;107:24–34.

    Article  PubMed  Google Scholar 

  71. Elnaghy AM. Influence of acidic environment on properties of Biodentine and white mineral trioxide aggregate: a comparative study. J Endod. 2014;40(7):953–7.

    Article  PubMed  Google Scholar 

  72. Ballal V, Marques JN, Campos CN, Lima CO, Simão RA, Prado M. Effects of chelating agent and acids on Biodentine. Aust Dent J. 2018;63(2):170–6.

    Article  PubMed  Google Scholar 

  73. Deepthi V, Mallikarjun E, Nagesh B, Mandava P. Effect of acidic pH on microhardness and microstructure of Theracal LC, endosequence, mineral trioxide aggregate, and Biodentine when used as root repair material. J Conserv Dent. 2018;21(4):408.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kayahan MB, Nekoofar MH, McCann A, Sunay H, Kaptan RF, Meraji N, Dummer PM. Effect of acid etching procedures on the compressive strength of 4 calcium silicate-based endodontic cements. J Endod. 2013;39(12):1646–8.

    Article  PubMed  Google Scholar 

  75. Agrafioti A, Tzimpoulas N, Chatzitheodoridis E, Kontakiotis EG. Comparative evaluation of sealing ability and microstructure of MTA and Biodentine after exposure to different environments. Clin Oral Investig. 2016;20(7):1535–40.

    Article  PubMed  Google Scholar 

  76. Huang XQ, Camba J, Gu LS, Bergeron BE, Ricucci D, Pashley DH, Tay FR, Niu LN. Mechanism of bioactive molecular extraction from mineralized dentin by calcium hydroxide and tricalcium silicate cement. Dent Mater. 2018;34(2):317–30.

    Article  PubMed  Google Scholar 

  77. Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF. Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res. 2012;91(5):454–9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Guneser MB, Akbulut MB, Eldeniz AU. Effect of various endodontic irrigants on the push-out bond strength of Biodentine and conventional root perforation repair materials. J Endod. 2013;39(3):380–4.

    Article  PubMed  Google Scholar 

  79. Li X, Pongprueksa P, Van Landuyt K, Chen Z, Pedano M, Van Meerbeek B, De Munck J. Correlative micro-Raman/EPMA analysis of the hydraulic calcium silicate cement interface with dentin. Clin Oral Investig. 2016;20(7):1663–73.

    Article  PubMed  Google Scholar 

  80. Reyes-Carmona JF, Felippe MS, Felippe WT. Biomineralization ability and interaction of mineral trioxide aggregate and white Portland cement with dentin in a phosphate-containing fluid. J Endod. 2009;35(5):731–6.

    Article  PubMed  Google Scholar 

  81. Bowes JH. The swelling of collagen in alkaline solutions. 3. Swelling in solutions of bivalent bases. Biochem J. 1950;46(5):530–2.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kemp GD, Tristram GR. The preparation of an alkali-soluble collagen from demineralized bone. Biochem J. 1971;124(5):915–9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Andreasen JO, Farik B, Munksgaard EC. Long-term calcium hydroxide as a root canal dressing may increase risk of root fracture. Dent Traumatol. 2002;18(3):134–7.

    Article  PubMed  Google Scholar 

  84. Hadis M, Wang J, Zhang ZJ, Di Maio A, Camilleri J. Interaction of hydraulic calcium silicate and glass ionomer cements with dentine. Materialia. 2020;9:100515.

    Article  Google Scholar 

  85. Daneshpoor N, Pishevar L. Comparative evaluation of bioactive cements on biomimetic remineralization of dentin. J Clin Exp Dent. 2020;12(3):e291.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fathy SM. Remineralization ability of two hydraulic calcium-silicate based dental pulp capping materials: cell-independent model. J Clin Exp Dent. 2019;11(4):e360.

    PubMed  PubMed Central  Google Scholar 

  87. Schwendicke F, Al-Abdi A, Moscardó AP, Cascales AF, Sauro S. Remineralization effects of conventional and experimental ion-releasing materials in chemically or bacterially-induced dentin caries lesions. Dent Mater. 2019;35(5):772–9.

    Article  PubMed  Google Scholar 

  88. Watson TF, Atmeh AR, Sajini S, Cook RJ, Festy F. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: biophotonics-based interfacial analyses in health and disease. Dent Mater. 2014;30(1):50–61.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tay FR, Pashley DH. Biomimetic remineralization of resin-bonded acid-etched dentin. J Dent Res. 2009;88(8):719–24.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amre R. Atmeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Atmeh, A.R., Watson, T.F. (2022). BiodentineTM Physico-Chemical Properties: From Interactions with Dental Tissues to Ageing. In: About, I. (eds) Biodentine™. Springer, Cham. https://doi.org/10.1007/978-3-030-80932-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80932-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80931-7

  • Online ISBN: 978-3-030-80932-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics