Skip to main content

BiodentineTM Applications in Furcation Perforation and Root Resorption

  • Chapter
  • First Online:
Biodentine™

Abstract

Clinical and experimental studies suggest that Biodentine is a biocompatible and bioactive cement that provides an effective material to restore perforations of the furcation and to treat root resorptions. Biodentine allows regeneration and clinical healing of the surrounding tissue like cells of the periodontal ligament and bone. With such calcium silicate cement, tooth loss is not inevitable after furcal perforation or root resorption. Nowadays, ProRoot MTA is considered to be the gold standard in the treatment of these cases. Concerning the treatment of furcation perforations and root resorptions, the evaluation of the available literature shows that Biodentine is at least comparable to ProRoot MTA, or even superior in certain respects. Its higher surface hardness and better adherence to the dentine lead to a better stabilization of the weakened tooth. Furthermore, cavities can be definitively restored more rapidly with Biodentine which does not lead to staining of the visible crown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bargholz C. Perforations. In: Hülsmann M, Schäfer E, editors. Problems in endodontics. Etiology, diagnosis and treatment. Berlin: Quintessence; 2009. p. 385–400.

    Google Scholar 

  2. Torabinejad M, Lemon R. Use of MTA as root perforation repair. In: Torabinejad M, editor. Mineral trioxide aggregate. Properties and clinical applications. Ames: Wiley Blackwell; 2014. p. 177–205.

    Google Scholar 

  3. Aggarwal V, Singla M, Miglani S, Kohli S. Comparative evaluation of push-out bond strength of ProRoot MTA, Biodentine, and MTA Plus in furcation perforation repair. J Conserv Dent. 2013;16:462–5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jung S, Mielert J, Kleinheinz J, Dammaschke T. Human oral cells’ response to different endodontic restorative materials: an in vitro study. Head Face Med. 2014;10:55. https://doi.org/10.1186/s13005-014-0055-4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rajasekharan S, Martens LC, Cauwels RG, Verbeeck RM. Biodentine™ material characteristics and clinical applications: a review of the literature. Eur Arch Paediatr Dent. 2014;15:147–58.

    Article  PubMed  Google Scholar 

  6. Torabinejad M, Parirokh M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview—part II: other clinical applications and complications. Int Endod J. 2018;51:284–317.

    Article  PubMed  Google Scholar 

  7. Krupp C, Bargholz C, Brüsehaber M, Hülsmann M. Treatment outcome after repair of root perforations with mineral trioxide aggregate: a retrospective evaluation of 90 teeth. J Endod. 2013;39:1364–8.

    Article  PubMed  Google Scholar 

  8. Lemon RR, Steele PJ, Jeansonne BG. Ferric sulfate hemostasis: effect on osseous wound healing. Left in situ for maximum exposure. J Endod. 1993;19:170–3.

    Article  PubMed  Google Scholar 

  9. Aksel H, Arslan E, Puralı N, Uyanık Ö, Nagaş E. Effect of ultrasonic activation on dentinal tubule penetration of calcium silicate-based cements. Microsc Res Tech. 2019;82:624–9.

    Article  PubMed  Google Scholar 

  10. Küçükkaya Eren S, Aksel H, Askerbeyli Örs S, Serper A, Koçak Y, Ocak M, et al. Obturation quality of calcium silicate-based cements placed with different techniques in teeth with perforating internal root resorption: a micro-computed tomographic study. Clin Oral Investig. 2019;23:805–11.

    Article  PubMed  Google Scholar 

  11. Kratchman SI. Perforation repair and one-step apexification procedures. Dent Clin N Am. 2004;48:291–307.

    Article  PubMed  Google Scholar 

  12. Bargholz C. Perforation repair with mineral trioxide aggregate: a modified matrix concept. Int Endod J. 2005;38:59–69.

    Article  PubMed  Google Scholar 

  13. Guneser MB, Akbulut MB, Eldeniz AU. Effect of various endodontic irrigants on the push-out bond strength of Biodentine and conventional root perforation repair materials. J Endod. 2013;39:380–4.

    Article  PubMed  Google Scholar 

  14. Nagas E, Kucukkaya S, Eymirli A, Uyanik MO, Cehreli ZC. Effect of laser-activated irrigation on the push-out bond strength of ProRoot mineral trioxide aggregate and Biodentine in furcal perforations. Photomed Laser Surg. 2017;35:231–5.

    Article  PubMed  Google Scholar 

  15. Prasanthi P, Garlapati R, Nagesh B, Sujana V, Naik KMK, Yamini B. Effect of 17% ethylenediaminetetraacetic acid and 0.2% chitosan on pushout bond strength of Biodentine and ProRoot mineral trioxide aggregate: an in vitro study. J Conserv Dent. 2019;22:387–90.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kaup M, Dammann CH, Schäfer E, Dammaschke T. Shear bond strength of Biodentine, ProRoot MTA, glass ionomer cement and composite resin on human dentine ex vivo. Head Face Med. 2015;11:14. https://doi.org/10.1186/s13005-015-0071-z.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kaup M, Schäfer E, Dammaschke T. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 2015;11:16. https://doi.org/10.1186/s13005-015-0074-9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Singla M, Verman KG, Goyal V, Jusuja P, Kakkar A, Ahuja L. Comparison of push-out bond strength of furcation perforation repair materials—glass ionomer cement type II, hydroxyapatite, mineral trioxide aggregate, and Biodentine: an in vitro study. Contemp Clin Dent. 2018;9:410–4.

    PubMed  PubMed Central  Google Scholar 

  19. Alsubait SA. Effect of sodium hypochlorite on push-out bond strength of four calcium silicate-based endodontic materials when used for repairing perforations on human dentin: an in vitro evaluation. J Contemp Dent Pract. 2017;18:289–94.

    Article  PubMed  Google Scholar 

  20. Akbulut MB, Arpaci PU, Eldeniz AU. Effects of novel root repair materials on attachment and morphological behaviour of periodontal ligament fibroblasts: scanning electron microscopy observation. Microsc Res Tech. 2016;79:1214–21.

    Article  PubMed  Google Scholar 

  21. Zhou HM, Shen Y, Wang ZJ, Li L, Zheng YF, Häkkinen L, et al. In vitro cytotoxicity evaluation of a novel root repair material. J Endod. 2013;39:478–83.

    Article  PubMed  Google Scholar 

  22. Luo T, Liu J, Sun Y, Shen Y, Zou L. Cytocompatibility of Biodentine and iRoot FS with human periodontal ligament cells: an in vitro study. Int Endod J. 2018;51:779–88.

    Article  PubMed  Google Scholar 

  23. Rodrigues EM, Gomes-Cornélio AL, Soares-Costa A, Salles LP, Velayutham M, Rossa-Junior C, et al. An assessment of the overexpression of BMP-2 in transfected human osteoblast cells stimulated by mineral trioxide aggregate and Biodentine. Int Endod J. 2017;50(Suppl 2):e9–18.

    Article  PubMed  Google Scholar 

  24. da Fonseca TS, Silva GF, Guerreiro-Tanomaru JM, Delfino MM, Sasso-Cerri E, Tanomaru-Filho M, et al. Biodentine and MTA modulate immunoinflammatory response favoring bone formation in sealing of furcation perforations in rat molars. Clin Oral Investig. 2019;23:1237–52.

    Article  PubMed  Google Scholar 

  25. de Sousa RM, Kochenborger Scarparo R, Steier L, Poli de Figueiredo JA. Periradicular inflammatory response, bone resorption, and cementum repair after sealing of furcation perforation with mineral trioxide aggregate (MTA Angelus™) or Biodentine™. Clin Oral Investig. 2019;23:4019–27.

    Article  Google Scholar 

  26. Cardoso M, dos Anjos PM, Correlo V, Reis R, Paulo M, Viegas C. Biodentine for furcation perforation repair: an animal study with histological, radiographic and micro-computed tomographic assessment. Iran Endod J. 2018;13:323–30.

    PubMed  PubMed Central  Google Scholar 

  27. Silva LAB, Pieroni KAMG, Nelson-Filho P, Silva RAB, Hernandéz-Gatón P, Lucisano MP, et al. Furcation perforation: periradicular tissue response to Biodentine as a repair material by histopathologic and indirect immunofluorescence analyses. J Endod. 2017;43:1137–42.

    Article  PubMed  Google Scholar 

  28. Silva RAB, Borges ATN, Hernandéz-Gatón P, de Queiroz AM, Arzate H, Romualdo PC, et al. Histopathological, histoenzymological, immunohistochemical and immunofluorescence analysis of tissue response to sealing materials after furcation perforation. Int Endod J. 2019;52:1489–500.

    Article  PubMed  Google Scholar 

  29. Tirone F, Salzano S, Piattelli A, Perrotti V, Iezzi G. Response of periodontium to mineral trioxide aggregate and Biodentine: a pilot histological study on humans. Aust Dent J. 2018;63:231–41.

    Article  PubMed  Google Scholar 

  30. Berger T, Baratz AZ, Gutmann JL. In vitro investigations into the ethology of mineral trioxide tooth staining. J Conserv Dent. 2014;17:526–30.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dettwiler CA, Walter M, Zaugg LK, Lenherr P, Weiger R, Krastl G. In vitro assessment of the tooth staining potential of endodontic materials in a bovine tooth model. Dent Traumatol. 2016;32:480–7.

    Article  PubMed  Google Scholar 

  32. Shokouhinejad N, Nekoofar MH, Pirmoazen S, Shamshiri AR, Dummer PMH. Evaluation and comparison of occurrence of tooth discoloration after the application of various calcium silicate-based cements: an ex vivo study. J Endod. 2016;42:140–4.

    Article  PubMed  Google Scholar 

  33. Lenherr P, Allgayer N, Weiger R, Filippi A, Attin T, Krastl G. Tooth discoloration induced by endodontic materials: a laboratory study. Int Endod J. 2012;45:942–9.

    Article  PubMed  Google Scholar 

  34. Camilleri J. Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. J Endod. 2014;40:436–40.

    Article  PubMed  Google Scholar 

  35. Możyńska J, Metlerski M, Lipski M, Nowicka A. Tooth discoloration induced by different calcium silicate-based cements: a systematic review of in vitro studies. J Endod. 2017;43:1593–601.

    Article  PubMed  Google Scholar 

  36. Cao Y, Bogen G, Lim J, Shon WJ, Kang MK. Bioceramic materials and the changing concepts in vital pulp therapy. J Calif Dent Assoc. 2016;44:278–90.

    PubMed  Google Scholar 

  37. Bogen G, Dammaschke T, Chandler N. Vital pulp therapy. In: Berman LH, Hargreaves KM, editors. Cohen’s pathways of the pulp. 12th ed. St. Louis: Elsevier; 2021. p. 902–38.

    Google Scholar 

  38. Schmidt A, Schäfer E, Dammaschke T. Shear bond strength of lining materials to calcium silicate cements at different time intervals. J Adhes Dent. 2017;19:129–35.

    PubMed  Google Scholar 

  39. Ballal S, Venkateshbabu N, Nandini S, Kandaswamy D. An in vitro study to assess the setting and surface crazing of conventional glass ionomer cement when layered over partially set mineral trioxide aggregate. J Endod. 2008;34:478–80.

    Article  PubMed  Google Scholar 

  40. Eid AA, Komabayashi T, Watanabe E, Shiraishi T, Watanabe I. Characterization of the mineral trioxide aggregate-resin modified glass ionomer cement interface in different setting conditions. J Endod. 2012;38:1126–9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hülsmann M, Schäfer E. Resorption. In: Hülsmann M, Schäfer E, editors. Problems in endodontics. Etiology, diagnosis and treatment. Berlin: Quintessence; 2009. p. 421–34.

    Google Scholar 

  42. Andreasen JO, Heithersay GS, Bakland LK. Pathologic tooth resorption. In: Rotstein I, Ingle JI, editors. Ingle’s endodontics. 7th ed. Cary: PMPH USA; 2019. p. 421–37.

    Google Scholar 

  43. Patel S, Durack C, Ricucci D, Bakhsh AA. Root resorption. In: Berman LH, Hargreaves KM, editors. Cohen’s pathways of the pulp. 12th ed. St. Louis: Elsevier; 2021. p. 711–36.

    Google Scholar 

  44. Tronstad L. Root resorption—ethology, terminology and clinical manifestations. Endod Dent Traumatol. 1988;4:241–52.

    Article  PubMed  Google Scholar 

  45. Haapasalo M, Endal U. Internal inflammatory root resorption: the unknown resorption of the tooth. Endod Top. 2006;14:60–79.

    Article  Google Scholar 

  46. Patel S, Ricucci D, Durak C, Tay FT. Internal root resorption: a review. J Endod. 2010;36:1107–21.

    Article  PubMed  Google Scholar 

  47. Wedenberg C, Zetterqvist L. Internal resorption in human teeth—a histological, scanning electron microscopic, and enzyme histochemical study. J Endod. 1987;13:255–9.

    Article  PubMed  Google Scholar 

  48. Pruthi PJ, Dharmani U, Roongta R, Talwar S. Management of external perforating root resorption by intentional replantation followed by Biodentine restoration. Dent Res J (Isfahan). 2015;12:488–93.

    Article  Google Scholar 

  49. Umashetty G, Hoshing U, Patil S, Ajgaonkar N. Management of inflammatory internal root resorption with Biodentine and thermoplasticised gutta-percha. Case Rep Dent. 2015;2015:452609. https://doi.org/10.1155/2015/452609.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nayak N, Priyanka RI, Shenoy V. Conservative management of inflammatory root resorption with perforation—a case report. Indian J Appl Res. 2019;9:24–5.

    Google Scholar 

  51. Weltman B, Vig KW, Fields HW, Shanker S, Kaizar EE. Root resorption associated with orthodontic tooth movement: a systematic review. Am J Orthod Dentofac Orthop. 2010;137:462–76.

    Article  Google Scholar 

  52. Yoshpe M, Einy S, Ruparel N, Lin S, Kaufman AY. Regenerative endodontics: a potential solution for external root resorption (case series). J Endod. 2020;46:192–9.

    Article  PubMed  Google Scholar 

  53. Heithersay G. Invasive cervical resorption. Endod Top. 2004;7:73–92.

    Article  Google Scholar 

  54. Patel S, Mavridou AM, Lambrechts P, Saberi N. External cervical resorption—part 1: histopathology, distribution and presentation. Int Endod J. 2018;51:1205–23.

    Article  PubMed  Google Scholar 

  55. Mavridou AM, Hauben E, Wevers M, Schepers E, Bergmans L, Lambrechts P. Understanding external cervical resorption patterns in vital teeth. Int Endod J. 2016;49:1737–51.

    Article  Google Scholar 

  56. Mavridou AM, Hauben E, Wevers M, Schepers E, Bergmans L, Lambrechts P. Understanding external cervical resorption patterns in endodontically treated teeth. Int Endod J. 2017;50:1116–33.

    Article  PubMed  Google Scholar 

  57. Panzarini SR, Trevisan CL, Brandini DA, Poi WR, Sonoda CK, Luvizuto ER, et al. Intracanal dressing and root filling materials in tooth replantation: a literature review. Dent Traumatol. 2012;28:42–8.

    Article  PubMed  Google Scholar 

  58. Jiang J, Zuo J, Chen SH, Holliday LS. Calcium hydroxide reduces lipopolysaccharide-stimulated osteoclast formation. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;95:348–54.

    Article  PubMed  Google Scholar 

  59. Bonte E, Beslot A, Boukpessi T, Lasfargues JJ. MTA versus Ca(OH)2 in apexification of non-vital immature permanent teeth: a randomized clinical trial comparison. Clin Oral Investig. 2015;19:1381–8.

    Article  PubMed  Google Scholar 

  60. Patel S, Foschi F, Condon R, Pimentel T, Bhuva B. External cervical resorption: part 2—management. Int Endod J. 2018;51:1224–38.

    Article  PubMed  Google Scholar 

  61. Karypidou A, Chatzinikolaou I-D, Kouros P, Koulaouzidou E, Economides N. Management of bilateral invasive cervical resorption lesions in maxillary incisors using a novel calcium silicate-based cement: a case report. Quintessence Int. 2016;47:637–42.

    PubMed  Google Scholar 

  62. Kim M, Kim S, Ko H, Song M. Effect of ProRoot MTA® and Biodentine® on osteoclastic differentiation and activity of mouse bone marrow macrophages. J Appl Oral Sci. 2019;27:e201801501. https://doi.org/10.1590/1678-7757-2018-0150.

    Article  Google Scholar 

  63. Hashiguchi D, Fukushima H, Yasuda H, Masuda W, Tomikawa M, Morikawa K, et al. Mineral trioxide aggregate inhibits osteoclastic bone resorption. J Dent Res. 2011;90:912–7.

    Article  PubMed  Google Scholar 

  64. Cheng X, Zhu L, Zhang J, Yu J, Liu S, Lv F, et al. Antiosteoclastogenesis of mineral trioxide aggregate through inhibition of the autophagic pathway. J Endod. 2017;43:766–73.

    Article  PubMed  Google Scholar 

  65. Han L, Okiji T. Uptake of calcium and silicon released from calcium silicate-based endodontic materials into root canal dentine. Int Endod J. 2011;44:1081–7.

    Article  PubMed  Google Scholar 

  66. Han L, Okiji T. Bioactivity evaluation of three calcium silicate-based endodontic materials. Int Endod J. 2013;46:808–14.

    Article  PubMed  Google Scholar 

  67. Natale LC, Rodrigues MC, Xavier TA, Simões A, de Souza DN, Braga RR. Ion release and mechanical properties of calcium silicate and calcium hydroxide materials used for pulp capping. Int Endod J. 2015;48:89–94.

    Article  PubMed  Google Scholar 

  68. Quintana RM, Jardine AP, Grechi TR, Grazziotin-Soares R, Ardenghi DM, Scarparo RK, et al. Bone tissue reaction, setting time, solubility, and pH of root repair materials. Clin Oral Investig. 2019;23:1359–66.

    Article  PubMed  Google Scholar 

  69. Mahmoud O, Al-Meeri WA, Farook MS, Al-Afifi NA. Calcium silicate-based cements as root canal medicament. Clin Cosmet Investig Dent. 2020;12:49–60.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rathinam E, Rajasekharan S, Chitturi RT, Martens L, De Coster P. Gene expression profiling and molecular signaling of dental pulp cells in response to tricalcium silicate cements: a systematic review. J Endod. 2015;41:1805–17.

    Article  PubMed  Google Scholar 

  71. Arnett TR. Extracellular pH regulates bone cell function. J Nutr. 2008;138:415S–8S.

    Article  PubMed  Google Scholar 

  72. Poggio C, Beltrami R, Colombo M, Ceci M, Dagna A, Chiesa M. In vitro antibacterial activity of different pulp capping materials. J Clin Exp Dent. 2015;7:e584–8.

    PubMed  PubMed Central  Google Scholar 

  73. Scelza MZ, Nascimento JC, da Silva LE, Gameiro VS, De Deus G, Alves G. Biodentine™ is cytocompatible with human primary osteoblasts. Braz Oral Res. 2017;31:e81. https://doi.org/10.1590/1807-3107BOR-2017.vol31.0081.

    Article  PubMed  Google Scholar 

  74. Gandolfi MG, Iezzi G, Piattelli A, Prati C, Scarano A. Osteoinductive potential and bone-bonding ability of ProRoot MTA, MTA Plus and Biodentine in rabbit intramedullary model: microchemical characterization and histological analysis. Dent Mater. 2017;33:e221–38.

    Article  PubMed  Google Scholar 

  75. Malkondu Ö, Kazandağ MK, Kazazoğlu E. A review on Biodentine, a contemporary dentine replacement and repair material. Biomed Res Int. 2014;2014:160951. https://doi.org/10.1155/2014/160951.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mehra N, Yadav M, Kaushik M, Roshni R. Clinical management of root resorption: a report of three cases. Cureus. 2018;10:e3215. https://doi.org/10.7759/cureus.3215.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Koubi G, Colon P, Franquin JC, Hartmann A, Richard G, Faure M-O, et al. Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth—a prospective study. Clin Oral Investig. 2013;17:243–9.

    Article  PubMed  Google Scholar 

  78. Nowicka A, Lipski M, Parafiniuk M, Sporniak-Tutak K, Lichota D, Kosierkiewicz A, et al. Response of human dental pulp capped with Biodentine and mineral trioxide aggregate. J Endod. 2013;39:743–7.

    Article  PubMed  Google Scholar 

  79. Nowicka A, Wilk G, Lipski M, Kołecki J, Buczkowska-Radlińska J. Tomographic evaluation of reparative dentin formation after direct pulp capping with Ca(OH)2, MTA, Biodentine, and dentin bonding system in human teeth. J Endod. 2015;41:1234–40.

    Article  PubMed  Google Scholar 

  80. Lipski M, Nowicka A, Kot K, Postek-Stefańska L, Wysoczańska-Jankowicz I, Borkowski L, et al. Factors affecting the outcomes of direct pulp capping using Biodentine. Clin Oral Investig. 2018;22:2021–9.

    Article  PubMed  Google Scholar 

  81. Harms CS, Schäfer E, Dammaschke T. Clinical evaluation of direct pulp capping using a calcium silicate cement-treatment outcomes over an average period of 2.3 years. Clin Oral Investig. 2019;23:3491–9.

    Article  PubMed  Google Scholar 

  82. Ulusoy ÖI, Paltun YN. Fracture resistance of roots with simulated internal resorption defects and obturated using different hybrid techniques. J Dent Sci. 2017;12:121–5.

    Article  PubMed  Google Scholar 

  83. Türker SA, Uzunoğlu E, Sungur DD, Tek V. Fracture resistance of teeth with simulated perforating internal resorption cavities repaired with different calcium silicate-based cements and backfilling materials. J Endod. 2018;44:860–3.

    Article  Google Scholar 

  84. Sarraf P, Nekoofar MH, Sheykhrezae MS, Dummer PMH. Fracture resistance of immature incisors following root filling with various bioactive endodontic cements using an experimental bovine tooth model. Eur J Dent. 2019;13:156–60.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Aggarwal V, Singla M. Management of inflammatory root resorption using MTA obturation—a four year follow up. Br Dent J. 2010;208:287–9.

    Article  PubMed  Google Scholar 

  86. Leiendecker AP, Qi Y-P, Sawyer AN, Niu L-N, Agee KA, Loushine RJ, et al. Effects of calcium silicate-based materials on collagen matrix integrity of mineralized dentin. J Endod. 2012;38:829–33.

    Article  PubMed  Google Scholar 

  87. Sawyer AN, Nikonov SY, Pancio AK, Niu LN, Agee KA, Loushine RJ, et al. Effects of calcium silicate-based materials on the flexural properties of dentin. J Endod. 2012;38:680–3.

    Article  PubMed  Google Scholar 

  88. Patel MH, Yagnik KN, Patel NK, Bhavsar BA. Obturating the pink tooth: an in vitro comparative evaluation of different materials. Endodontology. 2018;30:119–24.

    Article  Google Scholar 

  89. Tek V, Türker SA. A micro-computed tomography evaluation of voids using calcium silicate-based materials in teeth with simulated internal root resorption. Restor Dent Endod. 2020;45:e5. https://doi.org/10.5395/rde.2020.45.e5.

    Article  PubMed  Google Scholar 

  90. Heredia AL, Bhagwat SA, Mandke LP. Biodentine as material of choice for furcal perforation repair—a case report. Ann Prosthodont Restor Dent. 2016;2:54–7.

    Google Scholar 

  91. Indurkar MS, Maurya AS. Effective seal completes the deal: periodontal management of an iatrogenic endodontic perforation. J Interdiscip Dent. 2016;6:87–90.

    Article  Google Scholar 

  92. Kumar P, Noronha de Ataide I, Fernandes M, Lambor R. Furcal perforation repair with Biodentine: one year follow up of a case. Int J Curr Res. 2016;8:34221–3.

    Google Scholar 

  93. Mukherjee M, Shekhawat K. Perforation repair using Biodentine: a nobel approach. Int J Med Dent Sci. 2017;6:1558–60.

    Google Scholar 

  94. Thakur S, Damanpreet, Rani A, Garg N. Management of iatrogenic furcation perforation in mandibular first molar with Biodentine—two years follow up. Dent J Adv Stud. 2017;5:47–50.

    Article  Google Scholar 

  95. Kapil S, Verma S, Goel M, Singh M. Repair of iatrogenic furcal perforation using Biodentine. Paripex Indian J Res. 2019;8:125–6.

    Google Scholar 

  96. Nisar R, Tiwari P, Kumar V, Mahajan S, Baruah S. Management of pulpal floor perforation by using Biodentine: a clinical report. Eur J Pharm Med Res. 2020;7:512–5.

    Google Scholar 

  97. Nikhil V, Arora V, Jha P, Verma M. Non-surgical management of trauma induced external root resorption at two different sites in a single tooth with Biodentine: a case report. Endodontology. 2012;24:150–5.

    Article  Google Scholar 

  98. Borkar S, de Noronha de Ataide I. Management of a massive resorptive lesion with multiple perforations in a molar: case report. J Endod. 2015;41:753–8.

    Article  PubMed  Google Scholar 

  99. Costa SV, Oliveira JJ, Pinheiro SL, Bueno CEB, Ferrari PHP. Use of a tricalcium silicate cement in invasive cervical resorption. Endo (Lond, Engl). 2015;9:193–200.

    Google Scholar 

  100. Jerin J, Shoba K, Tomy Nithya T, Sheena P, Shibu A. Management of invasive cervical resorption with Biodentine: a case report. J Res Dent. 2015;2:660–6.

    Article  Google Scholar 

  101. Salzano S, Tirone F. Conservative nonsurgical treatment of class 4 invasive cervical resorption: a case report. J Endod. 2015;41:1907–12.

    Article  PubMed  Google Scholar 

  102. Baranwal AK. Management of external invasive cervical resorption of tooth with Biodentine: a case report. J Conserv Dent. 2016;19:296–9.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Salzano S, Tirone F. Mini-invasive nonsurgical treatment of class 4 invasive cervical resorption: a case series. G Ital Endod. 2016;30:52–63.

    Article  Google Scholar 

  104. Sharma A, Maria R, Mishra P, Pethiya A. Sealing the cervical defect with Biodentine. J Curr Res Sci Med. 2016;2:125–8.

    Article  Google Scholar 

  105. Ambu E, Fimiani M, Vigna M, Grandini S. Use of bioactive materials and limited FOV CBCT in the treatment of a replanted permanent tooth affected by inflammatory external root resorption: a case report. Eur J Paediatr Dent. 2017;18:51–5.

    PubMed  Google Scholar 

  106. Eftekhar L, Ashraf H, Jabbari S. Management of invasive cervical root resorption in a mandibular canine using Biodentine as a restorative material: a case report. Iran Endod J. 2017;12:386–9.

    PubMed  PubMed Central  Google Scholar 

  107. Mishra T, Arora S, Sridevi N, Mishra V. Clinical applications of Biodentine: a case series. Int J Contemp Med Surg Radiol. 2017;2:10–4.

    Google Scholar 

  108. Amin S, Jamsheed ET, Babu B, Amin V. Endodontic management of internal resorptive defect in maxillary central incisor using Biodentine; with 3 years and 8 months evident follow-up. Res J Pharm Biol Chem Sci. 2018;9:1688–95.

    Google Scholar 

  109. Karunakar P, Soloman RV, Anusha B, Nagarjun M. Endodontic management of invasive cervical resorption: report of two cases. J Conserv Dent. 2018;21:578–81.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Patni PM, Jain P, Jain S, Hiremath H, Agarwal R, Patni MJ. Internal tunneling resorption associated with invasive cervical resorption. J Conserv Dent. 2018;21:105–8.

    PubMed  PubMed Central  Google Scholar 

  111. Baranwal HC, Sami A, Singh N. Management of different challenging causes of invasive cervical root resorption. Ann Prosthodont Restor Dent. 2019;5:42–5.

    Article  Google Scholar 

  112. Heithersay GS. Invasive cervical resorption: an analysis of potential predisposing factors. Quintessence Int. 1999;30:83–95.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Dammaschke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dammaschke, T., Lipski, M. (2022). BiodentineTM Applications in Furcation Perforation and Root Resorption. In: About, I. (eds) Biodentine™. Springer, Cham. https://doi.org/10.1007/978-3-030-80932-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80932-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80931-7

  • Online ISBN: 978-3-030-80932-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics